XOTclIDE User Guide

Artur Trzewik
Edited by Bill Paulson

XOTclIDE User Guide

by Artur Trzewik and Bill Paulson
Copyright © 2006 Artur Trzewik

This document contains the user documentation and tutorials for XOTclIDE

XOTclIDE is an Integrated Development Environment for XOTcl and Tcl. XOTcl is an object oriented
extension for Tcl. XOTcl can a'so manage old Tcl code (procs).

XOTclIDE was suggested and inspired by such great Smalltalk graphical environment systems as
Squeak and Envy.

XOTclIDE islicensed under the GNU Public License

Copyright Artur Trzewik. License GNU Free Documentation License (GFDL)

Table of Contents

O 1 e 1 @ Y= V= 1
ADOUL thiSAOCUMENT ... e e e 1
MEIN FEALUIES ...ttt et et e e et e e et e e e e e eanaaeaes 1
BBNEFITS ... et 1
N 0 2

2. Getting Started TULOM@Alcveeeie e e e e e e e e e e e e e e aanaees 4
Developing Your First Application - TULOM@lovvieviiiiiiiiiieeii e 4

Starting XOTCHDE ... 4
Creating NEW COMPONENES ... icuuiiiie it e et et e e e et e et e e e eaa e e eaaaeenaes 5
Adding TCl PrOCEOUIES ... oveiieiee e e e e ee 6
Interactive Work With proCeAUIESccviiiii i e 7
Saving Component in FIlE SYStEMuiiiiiieii e 8
Using Components Without XOTCIIDEcoooiiiiiiiiiiiiiiiiieeeei e 9
Loading a Package or Component from File Systemccccoivviiiiiniiiiiiinieeennn, 9
Creating Configuration Maps and Distributing Programsccccoceiiiiiineennnn. 10
Evaluating Short TCl SCriPLSvvniiiii e 11
Advanced USage: OVEIVIEIWccvuiiiiiieiii e e e e e e e e e e e e e aanaees 12
Object-Orientation with XOTcl Components and Object Introspection - Tutorid 12
Load Sample APPICALIONcoeeiiieiiii e 12
Create an INStanCe Of @ CIaSSuuiieiiiiiiie e 13
ODJECE INSPECLON ...ttt e e e e aaas 14

3. Programming With XOTCIIDEcouiiiii e e 17
System Requirements and Installationcooveiiiiiiiiiii i 17
XOTclIDE Programs and Start OPtioNScceuvveunieeiieiinecieeeeeee e eeeeeaneeeees 17

Starting XOTCHIDE from telKituiiiiiiiiiii e 17
Starting XOTclIDE without Version Control Systemcccoveveviiiieiiiineeeennn. 17
Starting XOTclIDE with Version Control Systemcoooviiiiiiiiiiiiicieeenn, 17
Starting XOTclIDE with Version Control System by loading from Version Control 18
(@ 011 [0] 15X Y o] o1 1 18
Building an APPliCALIONuiiii i 18
XOTCHDE COMPONENES ...ceietieeeeiiie ettt sttt eeeab e e eaea s 20
Component HIFECYCIE ..o 20
Browsers and INSPECLONSc.uuieiiiit ettt e e e e e e e e e 21
WHIING SOUICE ...iveiiii et e e e e e e e e et e e ans 21
L L= (1 22
Debugging rUNNING SYSEEMSvevi e e e e e e e e e ean e eaes 22
VA= £ o o 11 o 23
Configuration Management and DePloYingcovvveeiiiieiiiiiineiiiieeceii e, 23
SPECIAl BIOWSEN'S ..ttt ettt ettt e et e e et e e et e e e e aaas 23
SOUMCE EQITING ..eveeee e e 23
BasiC EAItOr FUNCLIONc.uuiiiiiiiii e e e e 23
(0010 LY 0o 01o] =110 1 24
NaVIGaLiON IN SOUMCESceeviiieeiiii ettt e e e eees 25
Syntax highlightingovoiiiiii e 25
Checking ParenthieSeS 25
AULOMAELIC TNAENTING ...venieiee e e e e 26
Evaluate Tcl SCriptSin Editorcocviviiiiiiec e 26
A EXIENAEA FOBIUMESeu ettt e et e e 29
Version Control SYSIEIMoouuiiiiii et 29
Benefits of Version COoNtrolc.uiiiuniiiiiiii e 29
Base CharaCteriSliCS ... cvuu i 29
PIINCIPIE e 29
Database Schema of VErsion SYStemcc.veiiiiiiiiiieiii e 30

iv

XOTclIDE User Guide

Definitions (EditioNS,VErSIONS)cccuuiiiiieiiiieiiii e e e e e e e e e e e eaes 31
Using Version System, Main FUNCLIONSc.cocuviiiiieiiiiii e 31
ChangES BrOWSESiiiiiii et 32
COMPONENE LOBOESciiiti ettt ettt eeeaens 33
Installing Version Control SYSEEMcoeuuiiiiiiiiieei e e 33

Y 1= Q1 o (] o U 34
Reason for syntax checking in Tcl/XOTClcoooviiiiiiiii e, 34
Syntax checker implementationccoooeiiiiii i 34
EXample TCl ProCeAUIEScooiiiieieii e 35
Example XOTCl MEhOASccoeveiiiiiiie e 35
Syntax Checking While @ditingcc..oiiiuiiiiii e 35
SyntaX CheCKEr BIOWSENucieiieiei e e e e e e e e e e ees 36
TCUXOTCl PaISEl et e e 37

How to extend syntax interpretationcc.veveiiiii e 37
PrODIEMS .. 38
Magic StringS for ChECKEScooirii e 38
Checking Referenced Object CallSoiiiuiiiiiiiiie e 38
Configurations ManagemMeNntcouiiiiiiiiie e e 39
el = T =SSP 39
Configuration Map - Without Version Control Systemcccoevvvvvvviievinnennnnn. 39
UsSiNg ConfiguratioNS IM@DSccuuneiiiiiieeeiii et e 40
Deploying APPHICALIONuuiiiiiii et 41
Configuration Browser - with Version Control Systemccoooveiiiiiniiineennnn. 41

01 oo o 1 o [N 43
(D= o100 (0 1= gl =] (0 11T = 43
SEACK EITOr BIOWSES ...ttt ettt eeeaans 44
LI o G 2T (0TS 45
Variable access tracking and WaChingc.uuiiiiiiiieiiiiie e 46
Importing Tcl Projectsinto XOTCIIDE COMPONENLSc..veeuiiiiiiiiiieeiieaeiieeeeieeeenn 47
Importing by definition trackingcooviiiiiii e 47
Importing by System INtroSPECLiONccvvniviiiiii e e e e 49
IMPOrting TCl COMMENESieei e e e e e e aaeees 50
PlUug-IiNS ATChITECIUIE ... 51

5. Additional INfOrMELIONiiieii e 53
Author and License of XOTCHDEooouiiiiiiiee e 53
XOTCIHIDE WWW RESOUICESeevteeeieeei et e ettt e et e e et e e et eean e eees 53

List of Figures

1.1 Ancestry Of XOTCHDEccoviiiiiiei e e e e e e aaas 2
A I o 1] 1 = (01 4
2.2. Create COMPONENTeeeu ettt ettt ettt e e et et e et e e e n e e e e eat e e et eennaees 6
2.3. INVOKING PrOCEOUIESceeitieeeeiii ettt e e e ere s 7
2.4, SAVING COMPONENES ...ttt ettt e e et e et e et et et e e et e e et e aean e eeaaaeanaes 8
2.5. ConfigurationS Map BIrOWSEScvuuiiiieii e et e e e e e e eans 10
B AT L0 S o o= 11
2.7. Sample Component in COMPONENt BrOWSENcvvuniviiiiiie e ee e e e e e e 13
2.8. Create INStANCE DIAlOQ ...cevvuneieiiii et 14
2.9. Sample Railway appliCationccoouuiiiiiiiiie e 14
2.10. OBJECE INSPECLON ...ttt ettt et e e et e e e e e e eannas 15
2.11. Methods in ODJECE INSPECLONu.ivieiieit e e e e eaas 15
3.1. UML Structure of COMPONENESuuiiiieiiiieiiieeei e e e e e e e e s e e et e e e e e e e eaneeannns 18
G220 @ o (X @] 1= o o 24
3.3, SyntaxX Highlightingocoeeeiiiii e 25
3.4. Checking Par€ntNESISuuiiiiiiee et 25
R Y= 1 (R o] o TP 26
3.6. SUDSLITULE SCHIPLS ..uitniiiiit it e e e e e e e e e et e e e e eenns 27
3.7. INSPECt SCriPt EVAIUBLION ...vviiii e e e e e e e 27
4.1, Version SYySteM PriNCIPIEvvue e et e e e e e e e e e e e 29
4.2.Version System ER DIGQramoiiiiiiiiiiii e 30
4.3, ChanQES BIOWSES ... iieiiieeteii ettt ettt ettt e et e e e et e e e et eeena s 32
4.4, SYyntax CheCKEr DIalOg ieeu ittt e e e e e e ea e 36
4.5, Syntax CheCKer TOOIccuiiiiii e e e e eaas 36
4.6. Configuration Map BrOWSENccuuiiiiiieiiiceie e e e e e e e e e e e e e e e et e e e e e e e eeanaees 40
oy o g Lo (U= o g =] (0 Y= P 41
R B L= o B o = S ST SUPRTR 43
e B g o S =0 =] (0 Y= U UPTPTR 44
4.10. Method Call TraCkeroiiiieiiiiiie e e e e s 45
4.11. Variable Tracker and Variable WatCh ..o 46
4.12. Load Package DialOguuivvvnieiiieii e et 49
4.13. COMMENE SCANNEY TOOIeeeetiie ettt et e et e et eeeaa s 50

Vi

Chapter 1. XOTclIDE Overview

XOTclIDE is an Integrated Development Environment for the XOTecl [http://www.xotcl.org] program-
ming language. XOTcl is an object oriented extension for Tcl. XOTclIDE can also be used to program
Tcl code that does not use XOTcl. XOTclIDE was suggested and inspired by such great Smalltalk
graphical development environment systems as Squeak and Envy.

About this document

This document is the user guide for XOTclIDE. The first chapter is a short tutorial that demonstrates the
specifics of programming with XOTclIDE. The next chapter describes the use of XOTclIDE. Many
functions and characteristics are not described in this document because they are assumed to be quasi
standard in similar applications. Therefore component development and object-orientation will be not
explained in this document.

This documentation does not contain the programmer guide for programming in Tcl and XOTcl. Suit-
able documentation can be found on the Internet (see the section called “XOTclIDE WWW
Resources’).

Main Features

e Many source editing features for both Tcl and XOTcl, such as syntax highlighting and code comple-
tion

» Debugging

» System Introspection

» Source Documentation

» Source Syntax Checking for Tcl and XOTcl
* Version Control System

e Team Programming Support

» Testing Support (Unit Test Framework)

» Configuration Management

Benefits

» XOTclIDE can manage large projects with thousands of lines of Tcl or XOTcl program code.

» XOTclIDE supports component based development that helps to structure and reuse code in differ-
ent applications.

e XOTclIDE enables interactive XOTcl development, using the introspection functions of XOTcl.
There is no difference between using, developing, debugging and browsing (introspection) the sys-
tem. Y ou work on alive XOTcl system.

http://www.xotcl.org

XOTclIDE Overview

» XOTclIDE isaset of structure browsers. They can be used to browse class and object structure and
add and modify the methods or meta-data.

e The XOTclIDE Object Inspector lets you browse and manipulate all XOTcl objects. Y ou can navig-
ate through sub-object structures, inspect and modify variables, or invoke objects method with a GUI
interface.

* Includes a powerful syntax checking tool to find all typos while editing.

» XOTclIDE manages normal Tcl procedures, allowing reuse of old non-Xotcl code or mixing of Tcl
and XOTcl in one project.

e Supports programming process. Version Control, Unit Tests Framework
» XOTclIDE iseasly adapted and extended by the user
e XOTclIDE can be extended with dynamic loadable modules (plugins)

* XOTclIDE enables team development.

Ancestry

XOTclIDE does not try to invent “yet another way” to write computer programs. Rather it is a synthesis
of three streams - Tcl, XOTcl and Smalltalk - in the computer world, along with the author's experience.
Indeed XOTCclIDE is a Smalltalk like IDE programmed in Tcl/XOTcl. What are the main ideas taken
from these streams?

* TCL - isthe base programming language and platform for this system. Flexible string oriented inter-
preter allows implementing many ideasin a short time. TCL iswidely used, has many additional lib-
raries, offers a GUI Toolkit (TK) and supports many platforms.

» XOTdl - enables flexible object-oriented language support for Tcl. Allows programing and structur-
ing large application, and allows reuse of code in an object oriented manner. The implementation of
XOTcl in C brings reasonabl e performance.

» Smalltalk - the model for abig IDE. How to work with it and use all advantages of interpreted lan-
guage and dynamic/interactive programming. It was also the reference system for some basic pro-
gramming practices and tools (Debugger, Version Control, Unit Tests, Object inspector, Browsers).
Although Smalltalk lost popularity several years ago it has influenced many programming languages
(C++, Java, C#) and IDEs so the concepts will be familiar to many programmers.

Figure 1.1. Ancestry of XOTclIDE

XOTclIDE Overview

Tel XOTcl

N 7

XOTclIDE

|

Smalltalk
(IDE, Components, Version Control)

Chapter 2. Getting Started Tutorial

This chapter describes the first steps in using XOTclIDE. You will learn how to write your first
XOTclIDE application, and how to save and reload it.

Developing Your First Application - Tutorial

In this section you will learn how to manage the basic tasks of programming with the XOTclIDE: how
to create a new project (component), how to add new source, how to save the project and how to reload
it. This section assumes a basic knowledge of Tcl and programming tools and is designed for program-
mers with some experience with Tcl or XOTcl.

Starting XOTclIDE

Change to your chosen working directory and start XOTclIDE.tcl in it. The command line to start
XOTclIDE depends on your installation. For example, using aLinux RPM installation:

[artur@ybni k xotclIDE]$ tclsh /usr/local/lib/xotcl!|DE XotclIDE. tcl
or
[artur@ybni k xotcl IDE]$ /usr/local/lib/xotcl|DE Xotcl|DE.tcl

On Windows systems you can just click on XOTclIDE.tcl.

After loading two windows appear. One window is the Transcript window with a welcome message.
Thisis used to display system messages and evaluate short scripts. The second window is the Compon-
ent Browser, the main browser used to explore and modify your system structure and program code.

The Component Browser is divided into five panes: Component, Classes/Object/Tcl Procs Groups, Cat-
egories, Methods and Text Editor. The four upper list-views correspond to source code structures within
XOTCclIDE. Each of the four has an associated menu. The highest level structure is a Component. A
Component has a specific name and is a container for Classes, Objects and Tcl-Procedures-Groups.
Each Class can have instance methods or class methods, corresponding respectively to XOTcl's inst-
procs and procs. These methods can be grouped together in Categories. Standard non object oriented Tcl
procedures can be part of a Component when grouped in Tcl-Procedures-Groups. Individual Tcl proced-
ures may not belong to Categories. The Methods pane lists the names of methods (procs and instprocs)
in the selected Class and Category. The three levels (Component, Class/Object/Tcl-Procedures-Group,
and Category) may be used to practice component oriented programming (More Information the section
called “Building an Application™).

Exercise

Select component IDECore in the Components list view. In the Class/Objects list view all
classes contained in this component will be listed. Select class | DE: : Conponent in the
Class/Objects list view. Select category _all_categories in Categories list view. Select method
get Obj ect Def i neLi st inthe Methods list view. In the editor area the body (source code)
of this method will appear. The browser will look like screen-shot Figure 2.1, “Component
Browser”. The blue background of the Source button in the right lower corner indicates that
this method has a programmer comment. Press it to see this comment. The editor changes to
comment view. Press the button again to change back to source view. Press button Objects in
the Class/Objects list view to see another type of element of this component.

Figure 2.1. Component Browser

Getting Started Tutorial

Component Browser

Component Edit Cass Category Method System |

Components Alt-1 ClassesfObjects Alt-2 Categories Alt-3 Methods Alt-4
IDEBaseGUI % IDE ", [[an_categories || % [copyClassOrobject
IDECore | IDE::CommentHandler _uncategorized createTclProcs Group
IDEDebugy IDE::Component accessing destroy
IDEEditor IDE::Component::Tracker private getClasses
IDEErorReporter IDE::OhjectComments Con service getClassesHierarchy J
IDEStart IDE::Procs Group tcl-procs getCommentBody
IDETcIParser IDE:: TclProcsDescription getHierarchy From
IDEView getHame
core getObjectDefinelist
default getObjects
- - —! |[getProcs Group¥ithHame
f BEEE | f EETEED | a’ gntPrnr:sGrnuEs r"

IDE: : Component instproc getObjectDefineList {} |

set defList {}

foreach olass [concat [getClasses] [getObjects]] |
set res [rekBuildDefList %class $deflist]
if {[llength Sres]=0} {

set deflist [concat S5deflist Sres)

1

'

return SdeflList

7
Ezm

Creating new Components

Programming in XOTclIDE is component oriented. Assume that you want to write simple program as
follows.

This procedure dunp el enents of global array Tcl _platform
to file with nane specified by paraneter "file"
proc generateTcl Pl atfornProtocol {file} {
gl obal tcl_platform
set fhandler [open $file w
foreach key [array names tcl _platform {
puts $f handl er "$key = $tcl _pl atforn{$key)"

cl ose $fhandl er
gener ateTcl Pl at fornProtocol tclPlatformlog

A regular Tcl-Programmer would open his favorite editor, type the text and save it as a Tcl script. Per-
haps he would not create the procedure generateTclPlatformProtocol but would program it directly in
the global context as follows:

set fhandler [open tclPlatformlog w
foreach key [array names tcl _platform {
puts $f handl er "$key = $tcl _pl atforn($key)"

cl ose $f handl er

This can be good for small scripts. To program larger systems or to create reusable code a good pro-
grammer would prefer to write a Tcl-package like this:

Getting Started Tutorial

package provi de Pl atfornmiogDunper 0.1
This procedure dunp elements of global array tcl_platform
to file with nanme specified by paraneter "file"
proc generateTcl Pl atfornProtocol {file} {

global tcl_platform

set fhandler [open $file w

foreach key [array names tcl _platform {

puts $f handl er "$key = $tcl _pl atform $key)"

cl ose $f handl er

}

You would also need to create a file pkgl ndex. t ¢l and add its directory to the Tcl aut o_pat h
global variable. Y ou can use the package as follows

package require PlatforniogbDunper
gener ateTcl Pl at fornProtocol tclPlatforml og

The Tcl package mechanism allows the function library definition to be separated from the function call.

I mportant

XOTclIDE Components are hormal Tcl packages that contain additional meta information that
ishandled by XOTclIDE.
Let's make make afirst Component. Choose menu Component->New from Component Browser. In the
dialog enter the name of the new component “PlatformLogDumper” and click the apply button. Y our
new component will appear in the list of components. In the next section you will learn how to add pro-
cedures to this component.

Adding Tcl procedures

Your new created component appears in the Components list view. Select it. Now create a new Tcl-
Procedures-Group using the menu Class->Tcl Procs Group->New Group. In the dialog type the name of
the group.

The name of the newly created Tcl-Procedures-Group will appear in the Class/Objects list view. Select
it. New you can create your procedure. Select menu Method->New Method Template In the editor win-
dow the template for a Tcl procedure will appear as follows:

proc procName {args} {
enter the body here

Type your new procedure. When you are ready you must add the procedure to the interpreter. Use menu
or key accelerator Edit->Save/Apply (Control-s) Your Component Browser will appear as follows:
Figure 2.2, “Create Component”

Figure 2.2. Create Component

Getting Started Tutorial

Component Browser

Component Edit Class Category Method System

Components Alt-1 Classes/Objects Alt-2 Categories Alt-3 Methods Alt-4

IDEBaseGUI %, [MyGroup 1Y ", [generate TciPratformProta [
IDECore

IDEDebuy

IDEEditor
IDEErrorReporter
IDEStart
IDETcIParser
IDEView
PlatformLog Dumper
core

default

7 Tcl Procs _f Instance

=l

LA =

proc generateTolPlatformProtoocl file |
global tel_platform
set fhandler [ocpen 5file w]
foreach key [array names tecl_platform] {
puts Sfhandler "$kev = Stel _platform($key)"
I

2lose Sfhandler

v
Source |

If you want to create acomment for this procedure press the Source button in the right lower edge of the
edit area. The editor pane will change to comment view. Type a comment and apply it with Edit-
>Save/Apply (Control-s)

Interactive work with procedures

The main advantage of XOTclIDE isthat it is not only an editor for Tcl scripts but it “sits” directly on a
Tcl-Interpreter. Tcl for XOTclIDE isthe same as Lisp for Emacs. Y ou can try (invoke, call) a procedure
immediately after you define it. Select the procedure and choose the menu Method->Invoke Y ou will be
ask to specify the parameters for the procedure call. In Tcl everything isa string so it is no problem just
to type the parametersin the dialog as Tcl words (e.g “2 {2 3}” are two parameters)

Figure 2.3. Invoking Procedures

fenerate TclPlatformProtocol
give the parameter list
file

tcIFlatform. log

(4], Cancel

Getting Started Tutorial

The result is returned as result text. If the result is an XOTcl object or list of XOTcl objects the object
inspector will be displayed. If the result is an empty string then a special message box is shown.

Saving Component in File System

To save your new component in the file system use the menu Component Browser Component->Save
Components. In the dialog box select your component and check the button create pkglndex (see Fig-
ure 2.4, “ Saving Components”).

Figure 2.4. Saving Components

Component Save 'l.!'_lu"iEElrd

select components to save

PlatformLogDumper | %, . ||IDEPersistenceGUI A |
= |IDEStart
<< |IDETclParser

del IDEViews |

PatformLog Dumper
|[:ure

default

zdobry mysql
Zdobry::sql

Zotcl::package —’..f

_| no ide components

~ |

Target Dir
| Change |
_| no meta data @

_| as one file
W create pkilndex

Save | Cancel |

LS -

After accepting dialog a package file Pl at f or mLogDunper . xot cl will be saved in a filesystem
directory. Thefile should look asfollows.

automatically generated from XOrfcl | DE
package provide Pl atforniogbDunper 0.1

8

Getting Started Tutorial

@tclproc generateTcl Pl atfornProtocol idemeta struct \
Pl at f or mLogDunper MyG oup
proc generateTcl Pl atfornProtocol file {
global tcl_platform
set fhandler [open $file w
foreach key [array names tcl _platform {
puts $f handl er "$key = $tcl _pl atform $key)"

cl ose $f handl er

}

Note that the component was saved as a “regular” Tcl package. The one difference is the line beginning
with @. Thisis XOTcl notation for meta-data and is used in XOTclIDE to code additiona structure in-
formation. To use this package from pure Tcl you can check the button no meta data @ before saving
the component or define adummy proc to ignore the meta-data as follows

proc @args {}

The checked option create pkglndex caused the generation of the file pkgl ndex. t cl inthe samedir-
ectory as the package.

Tcl package index file, version 1.1

This file is generated by the "pkg_nklndex -direct” comrand
and sourced either when an application starts up or

by a "package unknown" script.

It 1nvokes the

"package ifneeded" comand to set up package-rel ated

information so that packages will be | oaded autonatically
in response to "package require" conmands.
When this

script is sourced, the variable $dir nust contain the
full path name of this file's directory.

package ifneeded Pl atformnmlLogDunper 0.1 \

[list source [file join $dir PlatformogDunper.xotcl]]

In thisindex file appear all packages from the directory with names that match the pattern * .xotcl.

Using Components without XOTclIDE

As mentioned above, XOTclIDE components are normal Tcl packages. To use them from Tcl scripts
you need first to register the package in Tcl package system by setting the aut o_pat h global variable.
If you do not use XOTcl, define adummy procedure to ignore @ lines. Here is a sample usage from the
tcl shell.

[artur @ocal host own_oxtcl]$ tcl

tcl >proc @args {}

tcl >l append auto_path .

fusr/share/tcl 8.3 /usr/share /usr/lib /usr/share/tcl X8.3 .
t cl >package require Pl atforniLogbDunper

0.1

tel >gener at eTcl Pl at f or nPr ot ocol out. | og

Loading a Package or Component from File System

To load a package or component into XOTclIDE use the menu Component->Load Package. If you do
not see your component in the package list, this means Tcl is unable find the package. The package list

9

Getting Started Tutorial

is generated using the Tcl package hames command which uses the aut o_pat h variable as a list of
directories to search for packages. XOTclIDE adds the current working directory to the aut o_pat h
list at start time. One way to load your package isto change into the directory with your packages before
starting XOTclIDE.

Normally you do not need to worry about how the components are saved or loaded in the filesystem or

how a component is represented in text. Y ou can install your component in Tcl distribution subdirectory.
Read the Tcl package command manual for more about the package mechanismin Tcl.

Warning

It can be quite tricky to force Tcl to find and load packages you need. Some people use the
phrase “Package Hell”. The package list are built only once and cannot be rebuilt if you change
packages dynamically. You will need to restart XOTclIDE to load packages you have just cre-
ated if your components are stored as files. You would not have this problem if you use
XOTclIDE's Version Control.

Creating Configuration Maps and Distributing Programs

Components in XOTclIDE are like function- or class libraries in other systems. Y ou can build your ap-
plication as one or more components. You aso need an application starting script that contains a line
like this
gener at eTcl Pl at f or nProt ocol out. | og
Y ou can of course write you own start script as follows and save it asafile
| append aut o_pat ch $pat hToConponent Fi | e
proc @args {}
package require PlatforniogbDunper
gener at eTcl Pl at f or nPr ot ocol out. | og
Alternatively, XOTclIDE supports configuration maps that group components together and specify a
start script. A configuration map specifies
» Components to load (the order to load and how they should be loaded from file-system or version
control system)
e preStartScript - a script that will be evaluated before |oading components
e startScript - ascript that starts the application after components are loaded
Configuration maps may be also used to deploy applications.
Tip

“Configuration maps’ correspond to project or “solution maps’ in other IDEs.
To specify a configuration map you use the Configuration MapBrowser that can be started from the
menu System->Configuration Map Browser.

Figure 2.5. Configurations Map Browser

10

Getting Started Tutorial

Configuration Map Browser
Configuration Edit System
PlatformLogDumper | I € | IDEBaseGUI I
IDE Core
del | IDEDebuy
= IDEEditor
4';1 IDEErvorReporter
down | IDEPersistence
A IDEPersistencefdd
Versions Options IDEPersistence GLUI
- IDEStart
a”a:;“ma:“: |AY IDETcIParser |
packag J IDEView
PlatformLog Dumper |
| core
Check Requirements default /
I no IDE components
generateTclPlatformProtocol out. log I
4

Do not forget to apply the start script from the menu Edit->Save/Apply (Control-s). After defining a
configuration map you can save it as a configuration map file (extension .cfmap).

Y ou can set this configmap file as a start parameter of XOTclIDE so al components from this configur-
ation map are loaded at starting time.

[artur @ocal host own_oxtcl]$ XotclIDE tcl -- -configmap platfornmlogDunper. cfmap

If you develop a big application it's a good idea to define a configuration map and use it as a start para-
meter. (see the section called “ Configuration Management and Deploying” for more informations)

Evaluating Short Tcl Scripts

Tcl is often used to write short ad hoc programs called scripts (Scripting Language). Scripts are often se-
guences of simple Tcl commands that are evaluated in the global context. Often no procedures are
defined in such scripts.

Every Editor Text Area in XOTclIDE has the ability to evaluate short scripts. To run (evaluate) the
script just select the script text and invoke it from the pop-down menu (Right mouse-button) or the menu
Editor.

You can load and manage your scripts by using Workspace windows. To open a Workspace use the
menu System->Workspace A Workspace is simply atext area (simple Editor) that can be used to type
scripts, save or load them from the file system. It can be also used as a temporary “ scratch pad”, to enter
and evaluate expressions during the process of testing new method definitions.

Figure 2.6. Workspace

11

Getting Started Tutorial

Edit System

$# Just select and evalut

set fhandler [open LclP
foreach key [array names
puts S$fhandler "jSkev

e Y

latform. log w]
tel platform] |
= %tel platform($key)"

i
close Sfhandle Da it

Alt-g

Print it
Substitute it
Inspect it
Browse it
Find/Replace

Control-g
Alt-x
Control-g
Control-r
Alt-f

L

Advanced Usage: Overvi

ew

The tutorial above describes how to get your first results with XOTclIDE. The main advantages of this
system can be seen by using the advanced features of XOTclIDE:

Version Control System
Object orientation with XOTcl

System Introspection

Debugging

Object-Orientation

integrated object oriented version control system lets you track all
changes in a project and restore old versions (the section called
“Version Control System”).

XOTclIDE was developed primarilyy to support object oriented
development with XOTcl. Many features - e.g. the object inspect-
or - are XOTcl specific.

XOTclIDE lets you inspect and change all objects and variables
in the system

With the extended debugger extension you can debug your pro-
gram with a professional system. Conditional breakpoints, pro-
gram stepping, program stack introspection are possible (the sec-
tion called “Debugging”).

with XOTcl Components

and Object Introspection - Tutorial

In this section you will learn about the dynamic and object-oriented aspects of XOTcl programming in

XOTclIDE.

Load Sample Application

Start XotclIDE:

[artur@ybnik xotcl IDE]$.

/ Xot cl | DE

12

Getting Started Tutorial

Now load the component SampleComponent 1 that isincluded in the XOTclIDE distribution. Choose the
menu Component->Load Package in Component Browser. From the dialog-box select the
“ SampleComponent” package to load. Now you should see the following in your Component Browser
window:

Figure 2.7. Sample Component in Component Browser

(= 1§ Component Browser [ell=] a]
Component Edit Class Category Method System
Components ClassesfObjects Categories Methods
IDEBaseGUI BYRairoad | BN an_categories \ [break i
IDECore Wheel _uncategorized draw Rod
IDEPersistence emergency Break
IDEPersistence GUI init
IDEView throttle
Sample Component tick
core tum
default
=dobry :mysql
=dobry :sql
T,.r _| objects T,.r Instance T,r

A~

Class Railroad -parameter {{speed 4}}

¥

Class Railroad - (06.05.2001 - 14:00:42) import] 1.0
I

The Component has two classes (Railroad and Wheel). Y ou can browse the methods of these classes to
see how the component works.

Create an Instance of a Class

Now try creating some instances of the Railroad class. Select the Railroad class in Class view and
choose the menu Class->Create Instance. Y ou will see the following dialog

1 Example by Richard Suchenwirth translated from Tcl to XOTcl by Gustaf Neumann and modified by me. First published on tcl-
wiki.

13

Getting Started Tutorial

Figure 2.8. Create I nstance Dialog

Create instance of Railroad

speed

In this dialog you can specify the arguments (or additional arguments) for the init method (passed to init
method or parameters). The class definition of Railroad is

Cl ass Railroad -paraneter {{speed 4}}

You could modify the start speed by specifying a different speed value (try "-speed 10"). For now you
can simply push the OK button and use default speed 4.

Object Inspector

The new created object of class Railroad builds awindow and starts to run.

Figure 2.9. Sample Railway application
[x]

In addition XOTclIDE can show another window called an object inspector browser. This window
shows the internal structure of XOTcl Objects. Y ou can see an Object's variables (attributes), subobjects
(aggregated objects) and methods.

Y ou can modify an Object's state by changing a variable in the browser. Choose the speed variable. You
should see the value 4 in your edit-area view. Type 20 in this area and press Control-S or choose menu
Edit->Save Y ou should see the locomotive speed up.

14

Getting Started Tutorial

Figure 2.10. Object Inspector

[" ObjectBrowser : ::sampleD
Edit Variahles Subobjects Method System

Vars Subohjects Methods
afterHandle ", [wheeld " [break 2
alpha wheell destroy
C wheel2 draw Rod
ST | | (wheels emergencyBreak

wheeld init

wheela throttle

wheelb tick

wheel7 tum

wheeld

',f wheel9 'f ',.f

4 2

Y

varable speed
1

You can also invoke methods on an object directly in the Object Inspector. Select the emergencyBreak
method and choose menu Method->Invoke.

Figure 2.11. Methodsin Object | nspector

15

Getting Started Tutorial

Edit Variahles Subobjects Method System

Ol =] ‘

Vars subohjects Methods
afterHandle ' [wheel21 '\ [break

alpha wheel22 destroy
\C wheel23 dravsHod
speed wheel24
wheelZa init
wheelZb throttle
wheelZ7 tick
wheel2t tum
wheel29
"/ |wheel2o N 7

Eailroad instproc emergencyBreak {} |
[2elf] =set speed [
I

¥

You can also specify which methods you should see - only those from Railroad or also those inherited
from other Objects or Superclasses. Y ou can even see the mixin methods available on the object.

16

Chapter 3. Programming with XOTclIDE
System Requirements and Installation

XOTclIDE is supplied in three versions, either as a set of Tcl/XOTcl scripts (packages), or as a Starpack
or Tclkit [http://www.equi4.com/tclkit] that needs no further installation. The Starpack version is avail-
able only for Windows. The Tclkit version runs on both Windows and Intel Linux.

To run the script version you need an installed Tcl with the Tk and XOTcl extensions. XOTclIDE can
run anywhere Tcl/XOTcl runs but it has been tested only for Linux (RedHat) and Windows. Tcl(Tk) and
XOTcl can be obtained free from the Internet - see Chapter 5, Additional Information. Almost all Linux
distributions offer Tcl and Tk as base packages, but often in the older 8.3 version. For Linux and Win-
dows, XOTcl must be installed separately. To use Version Control you need in addition a relational
database manager (SQL-Database) and the proper Tcl interface to it (see the section called “Version
Control System”). | suggest the following infrastructure.

e Linux asplatform
e Tcl and Tk (required)
e XOTcl Extension (required)

* MySQL Database (required for version control)

* mysqgltcl - MySQL Tcl interface (required for version control)

XOTclIDE Programs and Start Options

There are two main options for starting XOTclIDE: with or without Version Control. To use the Version
Control System you must install a database with the program installVV C.tcl included in XOTclIDE (see
the section called “Installing Version Control System”).

Starting XOTclIDE from tclkit

Xot cl | DE. exe -- [-help] [-startMode i deOnl yi deDBi deFr onDBi nst al | VC] [-ignoreprefs]
[-nodialog] [-preferences pr ef er enceslLi st]

[-configmap conf i gmapFi | e] [-dumpcompid | d]

[-dumpconfid | d] [-startconfid | d]

[-configmap conf i gmapFi | e] [-configmapdb conf i gmap_nane] [-preloadcomponents conpon-
ents_|ist][-preexecscri pt]

Starting XOTclIDE without Version Control System

XotclIDE.tcl - [-help] [-configmap configmapFile] [-preloadcomponents conpon-
ents_|ist][-preexecscript]

Starting XOTclIDE with Version Control System

Xot cl | DEDB. t cl -- [-ignoreprefs] [-nodialog] [-preferences pr ef er encesLi st]
[-configmap conf i gmapFi | e] [-dumpcompid | d]
[-dumpconfid | d] [-startconfid | d]

17

http://www.equi4.com/tclkit
http://www.equi4.com/tclkit

Programming with XOTclIDE

[-configmapdb conf i gmap_nane] [-preloadcomponentsconponent s_| i st] [-preexecscri pt]

Starting XOTclIDE with Version Control System by load-
ing from Version Control

Version Control is important if you want to develop and change XOTclIDE itself. Xotcll DEDBFrom-
DB.tcl loadsthe | DESt ar t , SQL interface and the rest of XOTclIDE from a Version Control database.
Before calling it, you must install the version control database and import the XOTclIDE sources into

version control.

Xot cl | DEDBFr onDB. t ¢l -- [-ignoreprefs] [-nodia og]
[-preferences pr ef er encesLi st] [-configmap conf i gmapFi | e]
[-dumpcompid | d] [-dumpconfid | d]

Options synopsis

-help print al available options and exit

-preferences You can specify the preferences for database connection. The
parameter is a Tcl keyed list, for example {{interface mysqltcl}
{ connection { user root dbank xotcllib}}

-configmap file Load config map and tell XOTclIDE to ignore its own compon-

-configmapdb configmap_name

ents

Load config map from version control

-prel oadcomponents compon- L oad components after startup

ents list

-preexec script Evaluate script after startup

-ignoreprefs do not read ~/.xotclide preferencesfile

-nodialog connect to version control database without showing a connection
dialog. All parameters will be read from preferencesfile or prefer-
ences list

-dumpcompid Read component with id from version control database, print it
and exit

-dumconfid id Read configuration map with id from version control database

print it and exit

Building an Application

XOTclIDE supports so called component oriented development. Components are big, reusable and com-
plete pieces of code. An application can be built from one or more components that can be also used by
another application. The structure of a component is as shown in the UML diagram Figure 3.1, “UML

Structure of Components’.

Figure3.1. UML Structure of Components

18

Programming with XOTclIDE

¢ ontailins

| n
Configurafion Map

+ N ame
+ W eresilon
n
m
Component
+ N ame
+ W er s 1 on
Proc Group HOTel Clase
+ I ame + N a me
+ ¥V er s 1on + YV er e 1 on
+ 1 s Mamespadcae : ool x
Category
+ N ame
Frocedure
+ N ame
+ W e r s 1 on
+ B o d v
Method
+ W ame
+ W er &1 on
+ B o dy

The component is the container for XOTcl classes, objects and Tcl procedures. Configuration maps or-
ganize the components into different applications. To allow more detailed and structured organization of
code XOTclIDE also provides “procedure groups’ and “method categories’. Method categories and pro-
cedure groups have no influence on the semantics of a method. Method categories can be effectively
used to group methods into different kinds. Method categories can be very useful to keep track of alarge
number of methods defined in one class. In Smalltalk these categories are often used:

s access
e initidize
» actions
e private

* persistence
* release

Procedure groups provide the ability to define the namespace of procedures. If you want to create a col-
lection of procedures in one namespace, use the dialog for creating the Procedure Group. The name of
this procedure group is also the name of a Tcl namespace. All procedures in this procedure group will be
defined in this namespace. One procedure group can only correspond to one namespace (and vice versa).

19

Programming with XOTclIDE

XOTclIDE Components

An XOTclIDE Component is a named persistent set of Classes, Objects, and Tcl Procedure Groups ad-
ministered by XOTclIDE. When you program in XOTclIDE, a Component is the thing that stores your
program. It serves the same purpose as a library in compiled languages or a package in Tcl, providing a
name that can be used to locate and load a set of items. A Component only has meaning when an applic-
ation or program is being loaded - once the program is running, the name of the Component where a
proc or Classwas originally stored is no longer useful.

XOTclIDE Components are built on top of Tcl packages - each Component has a package name, calls
package provide, and has an entry in a pkglndex.tcl file. A Component can be used in any Tcl or XOTcl
program by calling

<code>package require</code>

with the Component's name. Component are a slightly restricted form of package that contains only proc
definitions, Class definitions, Object definitions, and special metadata generated by XOTclIDE. No oth-
er Tcl commands are stored in a Component.

Each Component is stored either in one text file named after the Component, or in a Version Control
database.

Component lifecycle

It may be useful to consider how XOTclIDE loads and stores Components. When a Component is
loaded, al its proc and instproc hames, arguments, and bodies are loaded into the running Tcl/XOTcl in-
terpreter. Classes, Objects and their relationships are also loaded. Imagine that you need to edit the body
of a proc found in a Component. When you call up an edit area containing the body, XOTclIDE copies
the current body from the Tcl interpreter into an editable window. When you save the edit (Control-s),
XOTclIDE copies the body back into the Tcl interpreter (by doing a proc command.) At this point, the
new body is available in the Tcl interpreter, and you can test whether it works to your satisfaction. Once
you decide that it's good enough, you save the Component that contains the proc. XOTclIDE gets the
current proc names, args, bodies, Classes and Objects in the Component from the Tcl interpreter, con-
structs XOTcl commands that will regenerate the current state of each thing, and stores the commands
either in afile or aVersion Control database.

One thing to note about this process is that anything other than Classes, Objects, procs, and metadata
that was in the Component file will disappear, since the Component stored form is completely rebuilt
when XOTclIDE stores the Component. There's no guarantee that a Component file will preserve previ-
ous order. The text of a Component file may be edited. and any changes to proc bodies will be available
the next time the Component is loaded. The next time XOTclIDE saves the Component, the text file
may not look much like it previously did. For example, any comments added to the file that stores a
Component will disappear the next time XOTclIDE saves the Component.

Another thing to note is that changes to the heritage of Classes or Objects (is-a relationships) and
changes to the bodies of procs that occur while your Component is running under XOTclIDE will be
stored persistently. Suppose your Component has a Class apple - if running your component under
XOTclIDE adds a new superclass Class familyRose to Class apple, saving the Component will preserve
the new superclass relationship. The next time your Component is loaded, apples will be in the rose fam-

ily.

Nested Classes and Object aggregations (has-a relations) are stored in Components only if they have
been defined in a Classes/Objects view. To define a nested class that will be persistently stored, define
the class from the menu and give it a name that has the name of the class it's nested in followed by two
colons (::) and the name of the new class. Similarly, Objects can have persistent subobjects defined by
the programmer. Other subobjects that an Object acquires while running will not be persistent. For ex-
ample, suppose that your component defines a Class vehicle, and an Object orientExpress of Class
vehicle. The Object orientExpress might have many permanent subobjects of Class Wheel. These would
appear in the Classes/Objects view as orientExpress::leftFrontWheel, orientExpress::rightFrontWhesel,
etc. While your program is running, the orientExpress Object might get some passengers and save them

20

Programming with XOTclIDE

as subobjects of Class person. These passengers would not be visible in the Component Browser, al-
though they would be visible in an Object Browser. When XOTclIDE saves your Component, the ori-
entExpress will be saved with Wheel subobjects, but without any passengers.

Browsers and Inspectors

XOTclIDE was designed as a set of browsers that let you investigate your system in the way that you
need for your task. Other IDEs offer one all purpose single window to access all functions which tend to
be overloaded and complex. In software development you have many different tasks that need special
views into your system. You need different views and functions for programming, debugging, version
management, deployment, quality management, code review. These views should be similar enough to
reuse user knowledge and offer consistent handling. Of course some browsers (for example the Com-
ponent Browser) will be used more often and should have more functionality. The right balance must
be found between the two extremes - either one view with overloaded function or many views with only
afew functions. This section presents all XOTclIDE browsers sorted by main programming task.

In XOTclIDE we distinguish between browsers and inspectors. A Browser offers a view on code defini-
tion (classes, methods and other). Inspectors alow the user to navigate through Tcl Interpreter data
space. They can show the state of XOTcl Objects and global variables.

All browsers in XOTclIDE are built on the same principles. All browsers are divided (composed) into
areas (panes). There can be many list areas (list-views) and one or more edit areas. Each view area has a
corresponding pop-down menu in the main menu. Pop-up menus with the most used menu items let you
reach needed functions in the place you need them. Many browser subcomponents (sub views) are re-
used in different browser windows with the same functionality.

Almost al component windows have a special System menu that offers access for launching other
browsers and reaching main I DE functions, like settings.

In XOTclIDE you can open one browser type severa times. They work independently. Normally you
will use more than one component browser to see different code at the same time. Y ou can write a meth-
od call in one browser and open another browser to see the called method body.

Warning

XOTclIDE Browsers use a passive “model view controller”. If two browsers show the same
code and in one of them the code is changed the changes are not updated automatically in the
other view (browser). Y ou can force the view to be updated by double-clicking on the list-view
item.

Writing Source

Component Browser Probably the most used browser. It is suitable for viewing and changing
components, classes (or object, Tcl-Proc-Groups), categories, procs or
methods. With this browser you have access to all the source code in
your system (definition space). The browser also has functions to search
after a specific classin your system.

Heritage Browser This browser is suitable for examining and developing class hierarchies.
The XOTcl language provides multiple inheritance - one class can have
many parent classes. To visualize this relationship the parent classes are
represented as leaves of a tree in this view. To see the inheritance of a
class select it in the Component Browser and use menu Class->Heritage
Browser. You can also launch this browser with the System->Heritage

21

Programming with XOTclIDE

Browser In this case you must specify (by Name or choice-list) the class
name you want to view.

Children Browser This browser is suitable for examining and developing class hierarchies.
Unlike the Heritage Browser in this view the children of a class are
shown. To see the descendants of a class select the Component Browser
and use menu Class->Children Browser.

Method List Browser This Browser is launched as a result of searching on method bodies.
Menu Method->Search ...

Refactoring

Refactoring isanormal part of developing. We learn every day we develop. Refactoring allows transfer-
ring new knowledge to old code, and adapting old code for new purposes.

The main condition for successful refactoring is quick understanding of old code that was probably writ-
ten by another people. Code reading skills are important in this point. Since methods in object oriented
system are relatively short, the main question isto know and find the context of their usage. To view the
definition of a method that you see in a method body select the method's name in the editor and use
menu Method->Search Implementors. If you want to know where a method is called from select it in
M ethods view and use menu Method->Search Senders. Also the function “Browseit” in Menu Method-
>Search Implementors (Control-r) is very useful in finding symbol definitions. Just select a symbol
(word) in any editor area and invoke it from the pop-up menu. The function first searches for a class or
object name equal to the selected text, then for amethod or procedure name.

The following refactoring functions are possible in XOTclIDE

Rename Component Menu Component->Rename

Moving Classes to Another Com- Menu Class->Move to Component

ponent

Coping Classes/Objects Menu Class->Copy Class/Object This function can be also used to
rename a class. Just copy the class to a new name and delete the
old class.

Extract method body parts Menu Method->Selection to new method This task is normally

done if the method becomes too long and you want to divide it in-
to smaller methods. This function cannot resolve the correct vari-
able definitions and functions parameters.

Rename method name There is no direct function for it. Select the method, then in the
editor type a new name in method body, and then accept the
change in the editor. The new method will be added. The old one
must be removed with the delete function.

Debugging running Systems

Debugger Thisisapure Tcl debugger. Cal “::xotcl::Object halt” in the method body.

Object Inspector In the Object Inspector you can view and change variables of an XOTcl ob-
ject. It also has method lists that can be used to invoke methods on objects. To
launch the object inspector Class->Inspect All Instances You can also call

22

Programming with XOTclIDE

method inspect on every XOTcl object.

Version Control

If you start XOTclIDE with version control the browsers offer additional functions for managing version
control. The component, class and method areas (views) have an additional sub menu Version Control

Configuration Management and Deploying

Configuration Map Browser Launch from the menu System->Configuration Map Browser

Configuration Browser Available only if you started XOTclIDE with Version Control
System->V ersion Control->Configuration Browser

Special Browsers

Transcript Thisisamain singleton edit area that is either used to display sys-
tem messages (per command: Transcript message "Hallo World™)
or to evaluate short Tcl scripts.

Workspace It is a simple edit area that can be used to evaluate Tcl scripts.
You can load text files into a workspace or save the contents into
atextfile.

Globa Variable Inspector Access from the menu System->Global Vars Inspector It can be

used to inspect all global variables, or namespace variables.

Source Editing

Basic Editor Function

The XOTclIDE editor is based on a Tk Text widget. The following functions are available.

Cut Text Key Accelerator Control-x
Copy Text Key Accelerator Control-c
Paste Text Key Accelerator Control-v
Undo Key Accelerator Control-z available only with Tcl8.4

To see other accelerators see the Tk Text Widget documentation. text widget manual
[http://purl.org/tcl/home/man/tcl 8.4/TkCmd/text.htm].

Standard text find and replace dialogs are available in menu Edit. To search for text in many methods
use the menu in Browser Component Browser Method->Search Text (F4).

23

http://purl.org/tcl/home/man/tcl8.4/TkCmd/text.htm

Programming with XOTclIDE

Code Completion

It works like file name competition in bash (Unix Shell) or code completion in typed program language
IDEs. The user can type the first character of token than press Tab or Control-Space. XOTclIDE triesto
complete the token depending on its context. If many alternative completions are available a pop-down
window list will be displayed.

Figure 3.2. Code Completion

i Component Browser B x
Component Edit <Class Category Method System |
Components Alt-1 Classes/Objects Alt-2 Categories Alt-3 Methods Alt-4
IDEBaseGUI "%, [PrsCommandSubst "% [anl_categories "\ [extractlistTo Y
IDEConfiguration PrsComment _uncategorized getArrayKey
IDECore PrsContext initialize getCommand
IDEDebuy PrsElement list-elems getCommand OrCommen
IDEEditor PrsLiteral prs-errors getComment
IDEErorReporter PrsHoSubst prs-structure | getlist
IDEPersistence PrsQuoted stream-delegation parse ScHptTo
IDEPersistencefdd PrsVariahle substituteTo
IDEPersistence GUI ReadSthningStream
IDEStart TclParser |
IDETcIParser | | | L
IDFViewr | Classes i Instance i Fi
TelParser instproc getComnmand parent | A
instvar stream
set command [PrsCommand new -childof $parent -begin [$stream pos]]
while 1 {
Soommand addElem [getList &command]
skipBeparators; string [index I
set char [$stream getcChar] T
if {[%$stream atEnd] || $char=="%n" A
ength
Socommand end [ezpr {[$stream p| .
return §command T
tolower
if {schar==";"} { is
Soommand end [expr {[$stream p|totitle
tstream addPos 1 bytelength
return $command map
} ! equal Fi)
) £

EIParser»getCummand - {(10.08.2002 - 11:24:22) Jource Jl

The following language tokens can be completed

Tcl Core-Commands commands like: lappend list foreach

Tcl Core-Commands parameters for example string lengthjmatch|range

Defined Tcl Procedures al procedures known from info procs

Defined XOTcl Classesand Object al XOTcl Classes and Object in every namespace.

local class methods al methods (including methods derived from other classes) found
by $instance info instprocs

24

Programming with XOTclIDE

visible variables
parameters. Just type $ and pressthe Tab key

Navigation in Sources

variables defined per set append instvar foreach ... or method

The Method menu in the Component Browser offers some additional help functions for browsing
XOTcl/Tcl methods. Y ou can return to the last shown method by Functions “Back Method (Alt-L eft)”

or “Forward Method (Alt-Right)” just like from your HTML browser.

Spawn View opens a new editor window with the same contents as the current edit area.
Syntax highlighting

XOTclIDE implements two kinds of syntax highlighting:

Simple syntax highlighting

Parser-based syntax highlighting

is based on regular expression patterns. It highlights only "", sub-
stitution and # comments.

This syntax highlighting gives a truer result. It highlights Tcl
core-commands, variables, comments, ", substitution and XOTcl

key-words.

Figure 3.3. Syntax Highlighting

bd Spawned Method Edit

Edit System

TclParser instproc searchCloseBrace {obrace cbhrace} {
instwvar stream
zet open 0
search closing parenthesis until and of stream
while {![fstream atEnd]} {
set o [getCharWithMasking]
if {%c==%cbhrace} {
incr open|
} elseif {Sc==%fchrace} |
incr open -1
if {%open==0} {
return 1
I
b

Sstream addbPos 1

}

parseError "Parse Error: can not find closing $cbrace"

1

=

Checking parentheses

Finding opening or closing parentheses can be hard work in understanding some Tcl methods. Double-
click on [{" or]}" and XOTclIDE will find the corresponding opening or closing parenthesis for you

and select it.

Figure 3.4. Checking Parenthesis

25

Programming with XOTclIDE

b'd Spawned Method Edit

Edit System

TolParser instproc getCommand parsnt | A
instvar stream
set command [PrsCommand new -childof $parent -begin [%stream pos]]

while 1 {
tcommand addElem [getList $conmand]
skipSeparators
set char [%stream getChar]
if {[%stream atEnd] || %char=="%n"} {

Scommand end [expr {[%stream pos]-1}]
return $command

if {$char==";"} {
Socommand end [expr {[$stream pos]-1}]
fstream addPos 1
return $command

i

| 2

Automatic Indenting

XOTCclIDE triesto set the same indent in a newly inserted line as in the last line. If the last character be-
fore anew line is an opening parenthesis { then in the new line the indenting will be increased by four
and a matching closing parenthesis will be inserted.

foreach a $list {here cursor
After anew line you will seethis code

foreach a $list {
here cursor

}

Evaluate Tcl Scripts in Editor

This is a very powerful function. It lets you evaluate Tcl scripts as in the Tclshell console but is more
flexible. Simply select a string and evauate it with the pop-down menu or key-accelerator. Now you
will notice that in Tcl everything isastring. It is aso the easiest and fastest way to program in XOTcl/
Tcl.

Figure 3.5. Evaluate Scripts

26

Programming with XOTclIDE

L4 Transcript

Edit System |

Artur Trzewik 2001 a1l rights reserwved _S
HoteolIDE Yersion 0.40 08,2002

Interactive Developing Syvstem for HOTol (in wersion 1
.03

GHNU Public License Softwares

READY

o

SRR Do it Alt-g
Print it Ctri-g

Substitute it
Inspect it Ctr-yg
Browse it CtH-r

L 2

The Menu “Print it” corresponds to the Tcl eval command. Y ou can also use Control-g.

Figure 3.6. Substitute Scripts

sXpr 2 * 24

[expr 2 * 2] [eod]
Do it Alt-g
Print it Ctr-g
Substitute it |

Inspect it Ctr-qg
Browse it CtH-r

Menu “ Substitute it” corresponds to the subst Tcl command.

Figure 3.7. Inspect Script Evaluation

27

Programming with XOTclIDE

[expr 2 * 2] [ed]d

Class MyClass
set a [MyClass new]
“a Set myVar "my Valus"

set Q

Do it Alt-g
Print it Cirl-g
Substitute it

Inspect it CtH-qg
Browse it CtH-r

Menu “Inspect it” evaluates the selected text and launches an inspector on the returned value if it is a
XOTcl object. You can also use Control-g. If the result of the last operation is an XOTcl Object then it

will be displayed in an Object inspector.

Y ou can use Workspaces (see menu System->Workspace) to evaluate short Tcl scripts.

28

Chapter 4. Extended Features
Version Control System

As soon as you develop more than “Hallo World” programs you need a version control system. You
need it to save and archive your code and follow the code changes. Version Control gives you a guaran-
tee of returning to a former code state so you can experiment with your code. Version control isan im-
plicit requirement for many extreme programming practices. In XOTclIDE all code changes are updated
in version control immediately so you need not worry about saving your source. The Version Control
System is also a code repository that can be centralized for many devel opers. Components can be |oaded
and executed directly from the version control repository without the need to save them asfilesin afile
system.

Benefits of Version Control

» database oriented - all information is stored in database

» central code repository - no file copying

» suitable for big projects - able to browse in thousands of lines of code
» multiuser capable

» flexible as XOTcl - no locks, no commit, developed specially for object oriented languages like
XOTcl.

Base Characteristics

» based on relational database (currently mysgl, postgres, sglite or odbc)

» XOTcl programs are stored and managed corresponding to their structure. (Components, Classes
Objects, Methods).

» Every change in your system is stored on the fly. Y ou need not ask the system to update the struc-
tures.

» If you add or modify any method, a new row is inserted into the database. The old method version is
normally not deleted. Y ou can always return to every state in the past (no comment and uncomment
of code pieces).

» Stores not only sources but also additional data as documentation, comments, meta data.

Principle

Figure4.1. Version System Principle

29

Extended Features

Components | Classes/Objects | Methods
[
| : a Nsyoros myuna
' warslon 1.0
i Classa .
varsion 1.0 | a n=proc myfunc
: | werslon 1.1
: Classa a n=z'wros foo
Component A, versian 1.1 verzlon 1.0
version 1.0 p————
varslon 1.1
i Chject b
varsion 1.0 a nsRros looe
werslon 1.0
Component A
version 1.1 Object b hpresfoe
warsion 1.1
b o Fony
werslon 1.1
Ohject b
warsion 1.2 P———
werslon 1.0
b oo fio2
werslon 1.1

XOTclIDE Programs are structured in Components (a concept specific to XOTclIDE), Classes/Objects
and Methods (see the section called “Building an Application™). All these structure elements are stored
and managed separately in the database. A class can have many versions without having to store a com-
plete class definition in a separate text file (asis usua in cvsif aclassis one file) with many redundant
copies even though only one method differs. Normally the programmer doesn't care about version con-
trol. He just develops. The version control uses so called optimistic locking. If the programmer thinks
the state of a component or class is stable and ready to be marked he can “version” this component or
class. After this he can return to this state or recognize changes among different versions.

Database Schema of Version System

Figure4.2. Version System ER Diagram

30

Extended Features

’
Component w
o

ComponentRequire

<LomponentObject-

0

Method

There are m:n relationship between Components, Objects/Classes and Methods, meaning one method
version can belong to m object-versions. This diagram does not include configuration maps. If you know
this schema you can formulate queries on the repository directly in SQL. It is quite easy to find the new-
est methods or statistics about code devel opment with simple SQL queries.

The object attribute “ deforder” specifies the order of loading Objects/Classes into an interpreter.

The ComponentRequire entity maps the requirements for a single component version. The information
that a special component version needs a special version of another component is not stored.

Version info attributes are intended to store short text information for developer about the version and
are not used to identify entities.

Definitions (Editions,Versions)

An Edition is a piece you can work on. There are Component, Object and Method editions. Editions can
be changed. Methods can only have editions.

Versions are frozen editions which means they cannot be modified. A single class version aways has

the same methods. To freeze an edition you have to version it. To modify a versioned class you must
open anew edition of the class. This new class edition is based on the last version of the class.

Using Version System, Main Functions

The following functions are available on the menu for most structure items (Components, Objects,
Methods).

31

Extended Features

» Available - Show all items in database. All Components, all objects, and all methods that belong to
the selected object. Y ou can choose a edition and load it into the system so you can find and reload
the methods you have deleted.

» Editions - show all editions of currently selected item (Component, Object, Method). Y ou can load
your chosen version into the system.

» Changes - start the Changes Browser to show changes compared to another edition in the database.

» Load Previous - you can return to a previous edition. For methods you can simply discard the latest
changes.

e Version - Freeze current selected edition. (cvs tag or labels) You can version only components and
classes/objects. (It makes no sense for methods). Y ou can always return to this state of the class or
component.

* New Edition - to develop a versioned edition you must make a new edition. The system makes a
working copy of aversion.

* Version Info - Show a small info dialog. Y ou can specify the version string which can be 30 charac-
ters long. The first number will be automatically incremented by opening a new edition. This num-
ber is used as version number for Tcl packages.

The functions below are available only for components:

» Import - Install a package into repository. Probably loaded per load package by package require into
database.

* Requirements - Show and edit the required components for a selected component. The requirements
are set automatically. Normally you do not need to change them.

Changes Browser

Y ou can see the differences between this version and another version. It is diff command for XOTclIDE.
In figure Figure 4.3, “Changes Browser” we can see the changes between class versions of class | DE-
Cor e. In the method list are shown all instance methods with differences. Since the method r ek-
Bui | dDef Li st isselected in the text area we can see (yellow selection) the exact differences.

Figure 4.3. Changes Browser

32

Extended Features

[x] Changes Browser [C[s[a]
sSystem
IDECore 91 IDECore 32
adiCiass /]
adiObject
as3cript
basicAdd Object
yetRequiredFor
getVersionumber
name
_ | [saveAsSeript |
/ |unload 7
rekBuildDefList 6027 rekBuildDefList 4173
Hext Difference | Instance
if {[::ide::lcontain %$cbjectList § if {[::ide::lcontain $objectList & S
object]} | cbject]} |
return return
} J) J
set capp [%cbject getComponentName set capp [%$ocbject getComponentMName
]
if {%capp'=[[s=lf] getName]} f if {Scapp!=[[self] nams]} |
if {[lsearch $requiredComp $ca if {[lsearch $requiredComp %ca
ppl<0 &£& $capp!="core" && $capp!="defa ppl<0 && $capp!="core" && $capp!="defa
ult"} { ult"} {
lappend requiredComp $capp lappend requiredComp $capp
} I
ratiirn / retiirn /’
Il 1

Component Loader

You can execute programs directly by loading them from the Version Control System. It is not neces-
sary to deploy your application as a set of files. This makes the management of many client systems
very easy but the loading time can increase. CompL oader .tcl isasmall independent script that can con-
nect to repository, load the components specified by a configuration map and execute them.

Usage: CompL oader.tcl [-nodialog] {-ignoreprefs] {-nosynchronize] [-help] [-preferences list]

-ignoreprefs do not read preferences

-nosynchronize no IDE self developing mode

-nodialog no user interaction while connecting to db
-preferences string overwrite preferences (use keyed list)
-help show al options

Installing Version Control System

XOTclIDE supports the following databases as repository

* mysgl
e postgres
» odbc

33

Extended Features

o glite

The Tclkit distribution (Starpack) comes with sglite. I recommend using mysgl because it is my primary
developing system and the best tested.

To get version control on a Linux system you must:

» Install mysgl database. | recommend using RPM packages for your distribution.

» Install mysgltcl extension to access mysgl from tcl. To compile it yourself you need header files for
mysql database (for redhat the package mysql-devel). There are also RPMs for Linux available on
the mysgltcl site.

* Run theinstaller tool install\VVC.tcl. It can check the database connection, specify the connect para-
meter, install tables and copy components to repository. Then you can start XotclIDE with

XotclIDEDB or XotclIDEFromDB. The first connects to the database after loading itself using pack-
age require. XotclIDEFromDB triesto load the entire application from DB.

Syntax Checking

Reason for syntax checking in Tcl/XOTcl

Tcl has no types and and thisis good. One disadvantage is that ugly syntax errors (typically typos) crash
your program the first time you run it. Therefore you must care about running every piece of your code
through interpreter by writing special test procedures. Syntax checking with XOTclIDE can find most of
these errors (syntax errors) at editing time by simulating the interpreter. The syntax checker can parse
and interpret code without running it.

Syntax checker implementation

XOTclIDE implements a static syntax checker. It parses Tcl/XOTcl procedures and finds errors that nor-
mally appear only at run time. Because XOTclIDE does not manage source code but manages a Tcl/
XOTcl interpreter it always checks a method in the actual interpreter context. You cannot check your
Tcl files without loading (source $your_file) the procedures into the interpreter. The following syntax
checks are processed.

» check all called procedures

» check the count of arguments

» simulate quote and command substitution

» simulate evaluation of control structure commands (if, for, foreach, ...)

» check variable visibility

e check XOTcl self method calls. (my calMe; [self] callMe)

Syntax Checking can be used in two ways

» Syntax check while editing or accepting code.

* Run the syntax checker on projects, so you can check existing Tcl/XOTcl sources.

34

Extended Features

Example Tcl procedures

procs exanple {a} {
set b [lindex $a 0]
puts "$a $c"
set e [lindex $a end dunmmy]
foreach d $a {
if {$d==a} {
putd $d

}

The syntax checker will find the following errors:

procs exanple {a} {
set b [lindex $a 0]
puts "$a $c"
unknown variable c
set e [lindex $a end dummy]
await (2,2) argunents
foreach d $a {
if {$d==a} {
putd $d
unknown proc

Example XOTcl methods

Cl ass Test -paraneter {parl}
Test |nstproc fool {a {b 11} |
puts "[self] $a $

Method to check
Test instproc foo2 {b} {
nmy fool test
nmy fool test 1 2
await (1,2) argunents
foreach elem $b {
puts "[ny parl] $el ent
ny parl $el em
ny foo3
unknown i nstproc

}
set ¢ $d
unknown vari able d

Syntax Checking while editing

To enable syntax checking while editing, click on the check-box in menu Edit->Syntaxcheck on Save.
All accepted (saved) code will be syntax-checked. If errors are found a new window with syntax mes-

35

Extended Features

sages are displayed. Y ou can see the corresponding code in the editor by clicking on the list items. (see
Figure 4.4, “ Syntax Checker Dialog”)

If the errors shown by the syntax checker are not really errors or you have aready corrected the errors

you can press the button Force Saving. The code shown in the editor will be accepted without syntax
checking.

If you want to force syntax checking without accepting choose menu Edit->Syntax Highlight->Force
Syntax Check.

Figure 4.4. Syntax Checker Dialog

X Component Browser <2> |[=]]]
Component Edit Class Category Method System
Components Alt-1 ClassesfObjects Alt-2 Cateqgories Alt-3 Methods Alt-4
IDEEditor /1 all_categories 4
IDEErrorReporter _uncategorized
IDEPersistence
IDEPersistencefdd
IDEPersistenceGUl
IDEStart X -4 Syntax Errors
IDETcIParser Syntax error are fond! If you want to prevent checking in
IDEViews this method place magic text "no syntax check” in it.
inknown variable d :
core false argument count 3 {2,2)
default a]
xidnhrv v sl r’ geses -".
MyClass instproc testName {a} | K
puts %a
puts "4a sdv
lindex $a 1 1
i
7
Cancel Saving Force Saving
L L
¢
My Class (object not in DB) Source |

Syntax Checker Browser

You can launch this tool from the menu System->Syntax Checker. Choose the components you will
check and run the check with button Check Selected. You can browse the errors by clicking the other
two lists.

Figure 4.5. Syntax Checker Tool

36

Extended Features

XA Syntax Checker Browser

Syntax Check Edit System

DIEES

IDEBaseGUI BYIDEDE Connectbialog>cleanUpAfterSignal |
IDECore IDEDB ConnectFrame sinit

IDEDebug IDEPreferences class>setDBLoginParameters
IDEEditor IDEPreferences class=windovws LoadPrefs
IDEErrorReporier IDEPreferences class=windowsSavePrefs
IDEFPersistence IDE Starter class=parseCommandLineftys
IDEPersistencefdd

IDEPersistence GUI

IDEStart

IDETcIParser 7

Check Selected | Select All Components Exclude IDE Components |

IDEDBConnectDialog instproc cleanUpkfterSignal {} |
my instvar oldFocus oldGrab win
catch {focus foldFocus)

catch

hence this "catch".
tkPriwvibutton) doesn't get reset by it.

bind %win <Destroy> {}
destroy Swin

1
if {$oldGrab = "} |

if {$grabStatus == "global"} {
tigrab -global $oldGrab

L P

This tool check the syntax in selected components

j inknown variahle grabStatus

3688355 microseconds per iteration 46 methods

It's possible that the window has already been destroved,
Delete the Destroy handler so that

=

e

=

Y ou can produce a protocol of checking as text file with menu

Tcl/XOTcl Parser

Syntax Check->Protocol to file.

The XOTclIDE syntax checker works by using its Tcl parser programmed in XOTcl (see component
IDETclParser). It produces a parser tree that can also be used for other purposes. At this time the syntax

highlighting is also based on this parser.

Other ways of using Tcl parser in Tcl.

» Normalize source code (pretty print)

» convert source codes from or to another object oriented Tcl. (ITcl)

* Refactoring tools in the manner of Smalltalk.

How to extend syntax interpretation

See the PrsContext>checkTclCommand method. The syntax of al Tcl control command are coded as

simple pieces of code.

while proc

[$conmand get El em 1] substituteContents
[$conmand get El em 2] eval Contents

set proc

i f {$count ==2}

{
ny addVari abl eFrom [$command get El em 1]

} else {

ny checkVari abl eFrom [$conmand get El em 1] $notifier

37

Extended Features

It should not be difficult to extend the semantics for more commands.

Problems

The syntax checker cannot simulate the full power of a Tcl interpreter. For example, it interprets double
substitution as:

set a putd
$a hallo
set ac
set $a 2
puts $c

"$ahallo" will be not reported as an error but "puts $c" will report the error "unknown variable c'.

Magic strings for checker

If you want to avoid syntax checking for one method place the string "no syntax check" in the method
(probably as a comment).

If you want to force the checker to accept a variable use "add variables (varName var Name2)"

add variables (c)
set ac
set $a 3
puts $c

Checking Referenced Object Calls

It isalso not possible to check referenced object calls:

set a [MyCl ass new]

$a doJob

also direct call by object nane
Myd ass nyQbj ect

nyQbj ect doJob

The first method call will be not checked. The checker has no information about what is $a. The second
method call will be reported with the error "no such proc" (myObject). This second type of call should
be very rarein XOTcl programs (besides global singleton objects).

To solve the problem the checker would need more type information. Type information could be coded
as metainformation in the class. For example:

Class A

A addMet aVari abl e drawCont ext Dr awCont ext
A instproc draw {} {

ny instvar drawContext

?dramﬁont ext drawLine 0 2 0 50

In this case the Syntax Checker would know that "drawContext" references an object of class"DrawCon-
text". The same thing could be done for method arguments or even al variables by using special in-line

38

Extended Features

directives

set a [MyCl ass new]
variabl eType a MyC ass
$a doJob

This could be aback door to make Tcl type-safe if you want. In fact, the meta type information could be
collected by doing analysis of a running system (for example by using XOTcl filters). This type inform-
ations could also be used to build XOTcl assertions.

There is a chance of making a very powerful Tcl development system even with type safe syntax check-
ing.

Configurations Management

Configuration Management relates to two other areas in the software development process. They are De-
ployment and Release Management. In XOTclIDE Configuration Management is based on
“Configurations Maps’ that are used to specify a particular application (that is commonly deployed as
one unit) as a collection of components. Versioned configuration maps allow performing release man-
agement. With XOTCclIDE it is very easy to detect all changes (and their causers) between two applica-
tion versions. Y ou need no additional bureaucracy in your project.

Main Features

* organize the groups of components which should be loaded and used together
 build application (distribution) as a set of XOTclIDE components and a start script

* build the base file for CompLoader.tcl to load your application directly from a database
(thin-clients).

» gpecify the exact version numbers and order of components which should be loaded.

Two tools for configuration management are available in XOTcl. The Configuration Map Browser can
be used without the version control system and the extended Configuration Browser (Menu System-
>Version Control->Configuration Browser) can only be used with the version control system. The Con-

figuration Browser saves all information in the version control system. You can import and export data
between the two systems.

Configuration Map - Without Version Control System

Warning

It is strongly recommended to use the Configuration Browser if you work with the version con-
trol system.

A Configuration Map is a file (Tcl-script) that exactly specifies the components to be loaded and the
start scripts. One script (preStartScript) will be invoked before loading components and one (startScript)
will start your application after components are loaded. (see file Sample.cfmap)

The component list has the structure

{1 DECore 10}

39

Extended Features

{1 DEBase 12}

{I DEGU newest}
{1 DEVi ew package}
| DEVI ewDB

The loader will search the components IDECore versionld=10 and IDEBase versionld=12 in the data-
base. The newest version of the component IDEGUI will be loaded. The Component IDEView will be

loaded with package require IDEView. For component IDEViewDB the loader will search first in the
database and if not found it will try to load the package with package require IDEViewDB.

Using Configurations Maps

Launch the Configuration Browser by selecting menu System->Configuration Browser. Load the con-
figuration map (Sample.cfmap) by selecting menu Edit->Load Configuration Map. Press the toggle but-
ton. You can see the aspects of configuration maps

e preStartScript - tcl code that will be started before loading components
o startScript - tcl codeto start your application. Evaluated after loading all component.

Y ou can use list boxes and buttons to specify the configuration components

Figure 4.6. Configuration Map Browser

[x] . ConfigurationBrowser
Edit System Configuration
SampleComponent | IDEBaseGUI S
IDE Core
|IDEDebug
|IDEEditl:lr
IDEErrorReporter
down |IDEPersistence
vl IDE Persistencefdd
Versions Options IDEPersistenceGUI
I | oo
core
236':]3393? 2001 21:19:20 r] 0.1 J et
{03.07. 119:20} {pmport] 0.1} xdobry ::mysql
xdobry sl
/ ry::sq
Check Requirements | 7
_I no IDE components
¥ Y
Here is the place for your init script
It should ccontain only neot zotel stuff
This script is runing kevor loading other components
#
package reguire Tk
puts "yeee., preftarticrip is runing"
Example by <REichard Suchenwirth>
translated from Tel to HOTel by gustaf neumann
tk _messageBox -title {about Component} -message {Example by <Richard Suchenwirth
=
translated from Tcl to HOTcl by gustaf neumanni —-icon info -type ok
/
prestartScript
L Il

40

Extended Features

You can edit them. Press Control-S to apply changes. Select Edit->Load Components to load compon-
ents into the system (interpreter). Select Edit->Run Start Scripts to evaluate preStartScript startScript.
Y ou can make a new configuration map by using Edit->Init From System

Deploying Application

Distribution is the set of files that you can bind for example as a tar or zip file and distribute to other
parts. A Configuration map is a base to specify the distribution. First load the component with Edit-
> oad Components than select menu Edit->Make Distribution. Select the directory (or create a new
one). The system generates the set of files:

Sanpl e Sanple.cfmap Sanpl eConponent. xotcl pkgl ndex. tcl

Sample isthe executable file to start the application. Take alook at it.

#!/usr/ 1 ocal / bi n/ xow sh
File generated by xotcl|DE
edit if you want

set sname [info script]

if {$sname==""} {
Run interactive for devel op purposes
set progdir [pwd]

} else {
file I stat $sname stats
follow symlinks
if {$stats(type)=="1ink"} {
set snane [file readlink $snane]
if {[file pathtype $snane]=="relative"} {
set snane [file join [file dirnane [info script]] $snane]

}

set progdir [file dirname $snane]

| append auto_path [file dirname $progdir]
package require PlatfornlLogbDunper
gener at eTcl Pl at f or mPr ot ocol out. | og

Configuration Browser - with Version Control System

Figure4.7. Configuration Browser

41

Extended Features

b4 Configuration Browser

Edit System Configuration

Configuration Conf. Version Components
IDE-Adds | 17.10.2002 - 14:15:37 | IDEDocumentation - V-[01.08.2002] 0.32 01.08.20(K
funny-sample IDETestFramework - V-[28.06.2002] 0.311 28.06.2
test? IDETests - [10.08.2002] 0.322 26.08.2002 - 19:33::
tests IDEVCInstaller - ¥-[10.05.2002] 0.321 10.08.2002 -
wdohry IDEFersistenceTests - import] 0.1 15.09.2002 - 1
add
/ remove
Dependent Confs. release other
load
info
view
inspect
! i
&11 non standard HOTclIDE Components. K
Add-0Ons
|
l= 7 Comment | mll

This tool saves the configuration-maps in the version control systems so configuration-maps can also
have editions and versions. Therefore you can have many editions of one configuration-map. You can
browse changes among different configuration-map editions.

Warning

Unlike other browsers, all Configuration Browser functions are available only in pop-down
menus.

For example you have built a program named sgleditor. In Version 0.1 your program is built from com-
ponents as below

configuration-map - sgleditor (version 0.1)

e guisystem - version 0.1

* gylparser - version 0.2

e persistence - version 0.3

And the additional configuration-map (sub configuration map) sglinterfaces - version 1.2

In version 0.2 sgleditor has the following configuration

e guisystem - version 0.2

* glparser - version 0.2

42

Extended Features

» persistence - version 0.4

And the additional configuration-map (sub configuration map) sglinterfaces - version 1.2

The main idea of Configuration Browser and Configuration-Maps is to have a medium for component
based programming. This means you have many components that are parts of many products. All these
components are in one version system.

It is not yet possible to use the Component Browser to generate a distribution. Y ou must export a ver-

sioned configuration map to configuration map file with pop-up menu Conf. Version->export to map.
Then you can use this file with Configuration Map Browser

Debugging

Debugger Browser

This Browser lets you stop the program flow at a point and view calling stack methods and local vari-
ables. To set abreak point call the halt method

[self] halt

in Tcl procedures you need to use

oj ect halt

Figure 4.8. Debugger

43

Extended Features

IDE::CompView (IDE::CompView DB)>setVersion

You can resume the program flow with button Resume or terminate the flow by exiting the browser
(close window).

Stack Error Browser

This browser can parse the error stack info “errorinfo”. XOTclIDE modifies the bger r or method and
adds a new button to the standard error dialog (XOTclIDE browser). Tcl does not let you inspect the
calling stack after errors so thisis al the information available after an error. Y ou can view (Button er-
rorInfo) the origina errorinfo text. The browser tries to highlight the called methods in the stack. In the
extended debugger an error causes the debugger to be invoked directly at the site of the error.

Figure4.9. Error Stack Browser

Extended Features

:YourClass =proc Hamez2

[self] testd ar 12

Tracker Browser

Thisisa GUI for a browser like the tracker from the XOTcl package xotcl::tracker. You can track calls
to every object of a chosen class. To Track a class select menu "Track Class' from the Class Menu in
the Component Browser. Y ou can customize the tracker to show

only method entry or exit points
¢ ignoreinternal calls from the same object
e do not show arguments or return values

¢ do not show calling information

Figure 4.10. Method Call Tracker

45

Extended Features

[l - TrackerBrowser &
Tracked Methods Edit System 1
IDE::ClassViewDB [N
|

@ Prot Method Entry | Ignore Arguments | Ignore Calling Info
@ Prot Method Exit | Ignore Intemal Calls

::IDE: :ClassViewDE. : :browser(: :classviewsselectItem from ::IDE::Classy
iewDE. callingobject>callingprocIDE: tMethodViewDE

<::IDE: :Class¥WiewDE. : :bhrowserl: :classviewrselectItem from ::IDE::Clas
sYiewDE. : ibrowser(: :¢lassviewsbuttonPush

::IDE: :ClassViewDE. : :browser(: :classviewrselectItem from ::IDE::Classy
iewDB.callingcbject>callingprocIDE: CompWiewDB

<::IDE: :Class¥WiewDE. : :browserl: :classviewrselectItem from ::IDE::Clas
sYiewDE. : :browser(: :classviewsrbuttonPush

::IDE: :ClassViewDE. : :browser(: :classviewrselectItem from ::IDE::ClassV
iewDE.callingcbject>callingproc{{}}

<::IDE: :Class¥YiewDB. : :browserl: :classviewrselectItem from ::IDE::Clas /

=

Clear I Humber of items to hold

@ Protocol on | Reqgular expresion match _| inverse match

Variable access tracking and watching

XOTclIDE can be used to track read or write access on global variables or object variables. To add some
track use variable menu in global variables browser or object inspector. The some selected access occurs
the debugger will be invoked in access place. You can inspect in debugger the access context and re-
sume the operation per button resume. The variables can be also watched in entry Tk widget link per -
textvariable with chosen variable.

Figure4.11. Variable Tracker and Variable Watch

In this screen-shoot are 4 tracked variables. By variable tk_library the debugger are invoked on every
read access. There are also one XOTcl variable (object variable) objectVar from object ¢ written in
XOTdl style as ::c::objectVar. Local procedures variables can not be tracked or watched.

To add new tracks for chosen variable use Object Inspector or Global Vars Browser. For example Vari-

ables->Debug on Write Access to add write access track. You can have multiple tracks (read, write,
watch) on one variable.

Warning

Watches on variables can prevent proper unset of variables. Therefore watches can influence
program flow.

Importing Tcl Projects into XOTclIDE Compon-

46

Extended Features

ents

In XOTclIDE there are three ways to import your existing Tcl sourcesinto XOTclIDE components. This
section describes how these importing function work and what their limits are. Generally if your Tcl
program is well structured and has no commands or a few commands in the global script context other
than class or procedure definitions the importing works out of the box.

Importing by definition tracking

There are two main importing functionsin XOTclIDE, both accessible from the Component Browser

L oad Package Component->Load Package With this function you can load any Tcl package ac-
cessiblein your Tcl system by calling package require name.

Import Source Component->Import Source This importing function can evaluate any script in the
file system. It is the same as using the command sour ce filename.

The importing functions in XOTclIDE do not parse Tcl scripts but evaluate them with the Tcl Interpret-
er. Therefore the importing works very reliably. Any package or script can be loaded into XOTclIDE.
XOTclIDE tracks the definition of Tcl procedures with the proc name arguments body command and
the definition of XOTcl Classes, Objects and their instance methods and class methods. The importing
tracker notices every newly defined procedure, creates components, and adds the procedure to this com-
ponent. All procedures are aso nhormally evaluated by Tcl interpreter. The importing tracker does not
notice any other script evaluation in the global context.

Limits of Source Importing and manual adaptation

Let'sexamineaTcl script inthefilemyapp. t cl that should be imported.

This is great script that I want to reuse in XOlcl | DE
Aut hor: old Tcl'er

Revi sion:

package require Tk

set debug 1
set color red
set configfile myapp. conf
if {![file exists $nmyapp.conf]} {
error "can not find config file $configfile"
}

Starting Application
paraneters: None

proc startApp {} {
button .re -text "Qit" -comand "quite"

... your program
many ot her defined procedures

next line starts the application
start App

The importing function will create anew component with the name myapp with all your procedures. The
new component can be seen as follows

automatically generated from XOrfcl | DE
package provide inmportExanple 0.1

47

Extended Features

@tclproc startApp idenmeta struct inportExanple default

proc startApp {} {
button .re -text "Quit" -conmand "quite"

... your program

As you see, al comments, global context commands and the application starting command are lost.
Comments (# lines) in the global context are not imported during evaluation because Tcl ignores them.
Y ou can use the comment importer (see the section called “Importing Tcl comments”) to add these com-
ments to the component.

Another problem is the evauation of Tcl commands in the global context. In XOTclIDE you should
have just one such line coded in the configuration map (see the section called “ Configurations Manage-
ment”). To enable proper import the definition block should be moved to a special new procedure. The
exampl e above could appear as follows:

This is great script that | want to reuse in XOrcl | DE
Author: old Tcl'er

Revi sion:

package require Tk

set debug 1

proc defined obal Constans {} {
gl obal color configfile
set color red
set configfile myapp. conf

}
proc checkConfigFile {} ({
gl obal configfile
i f {![file exists $configfile]} {
} # error "can not find config file $configfile"

Starting Application
paraneters: None

proc startApp {} {
button .re -text "Quit" -comand "quite"

... your program

}

proc basicStartApp {} {
def i ned obal Const ans
checkConfigFile
start App

many ot her defined procedures

next line start the application
basi cSt art App

In this case we have only one line with direct script evaluation and this can be imported into XOTclIDE
without losing information. | think good Tcl programs should be written this way - no evaluation in the
global context - anyway.

Importing - Load regular Tcl Package

To import aregular tcl package use menu Component->Load Package in Component Browser. A new
component with the same name as the imported package will be created, along with nested packages that
are loaded from the imported package using package require.

48

Extended Features

Figure4.12. Load Package Dialog

Dialog
Wamig: experimental. Load xoicl package or any tcl
package aviable for your system by package require
IDEView A |
Itcl
Itk =
lwidgets
MyTest
PlatformLog Dumper
Sample
Sample Component
Tcl
Tclshal /
oK Cancel

Importing - Import Source

Newly created components will have names that correspond to the script file name, without extension.
Any nested script evaluation or package require commands are respected. Before sourcing the script
XOTclIDE changes the working directory to the path of the script file. The application will start nor-
mally. A problem may appear when the application uses a toplevel window, as the toplevel window is
already used by the XOTclIDE Transcript window. If an error occurs while importing, importing is in-
terrupted with the error message.

Procedures defined in the :: namespace will be added to a Tcl-Proc-Group named “default”. Procedures
with names “mynamespace::myname” with be added to a Tcl-Proc-Group named “mynamespace”.

Importing by System Introspection

Another way to import your application is to start XOTclIDE from your application and introspect it
with XOTclIDE. XOTclIDE can import procedures and XOTcl object classes directly from a running
Tcl interpreter. To start XOTclIDE from your application you can use the START. t ¢l script in the
XOTclIDE directory. Change the working directory to the XOTclIDE directory with the START. t cl
script.

To import code from your running application you must first create a new component where all proced-

49

Extended Features

ures and classes from the Interpreter will be stored. To import a Tcl procedure from the Tcl interpreter,
first select the component where you want to import to and use menu Command->Low Level Functions-
>Register Tcl Proc from Interp in Component Browser

To import XOTcl Classes from the Interpreter select the component and choose menu Command->L ow
level Functions->Register Class from Interp in Component Browser

Although importing an application like this is more work, it's a good choice if you want to import only
part of an application or the application is not in areadable format.

Importing Tcl comments

Consider the example below

This procedure nake magic initialization of
X Modul e.
Warni ng:
proc initMduleX {{path {}} {
#

#
}

The three line comment belongs to procedure initModuleX. XOTclIDE has a special parser that can scan
Tcl script files and associate the comments to previously imported components. To launch the # Com-
ments Scanner use the menu System->Extras-># Comments Scanner Unlike the source importer, this
tool does not evaluate the selected scripts but scans all lines after aleading # character.

Figure 4.13. Comment Scanner Tool

50

Extended Features

Comment Scaner

This tool try to extract the standart tcl comment # {just
hefore procedure header) from choosen files and set them
as AXotcllIDE comments.

You can use this tool just after importing Xotcl stuff to
zoiclide

Change Dir |

FormEditor.tcl~ Al
Form3erver.cfimap —
FormServer.tcl |
Formserver.tcl-

IDEBaseGUI.xotcl |
IDECHAHNGES

IDECHAMGES~

IDEConfiguration.xotcl

IDEConverter.xotcl

IDECore.xotcl F

Al files | Al tcl files

acane |

", =

Plug-ins Architecture

One of main advantages of XOTCclIDE is easy customizing of XOTclIDE for users needs. Many of
XOTclIDE components are loaded dynamic at runing time only on demand. In menu System->Plug Ins
are al currently registered plug-ins accesible. The plug ins are normal components the registration and
start scripts are specified per filepl ugi nsli st. t xt in XOTclIDE directory.

Following Plug-Ins are currently delivered with XOTclIDE

Unit Test Framework Unit Test Framework programmed after Smalltalk SUnit (JUnit,
NUnit). See aso Unit Tests Homepage
[http://www.xprogramming.com/testfram.htm]

XOTclIDE Unit Tests Tests of XOTclIDE itself

Funny Graphics Example Small XOTcl Application taken from Tcl Wiki

HTML Doc Generator Generate HTML Source Code Documentation from Source Com-
ments

Comments Scaner Importing tool described in the section called “Importing Tcl com-
ments’

Tcl Wiki Reaper Can import code sniplets form Tcl wiki Tcl Wiki

[http://mini.net/tcl/8179]

51

http://www.xprogramming.com/testfram.htm
http://mini.net/tcl/8179

Extended Features

TclKit Deploeyer Tool

Tk Win Inspector

Tcl Script Editor

SQL Browser

Visual Regexp

Thistool extend the functionality of Application Deployer Wizard. It
can generate TclKit Distributions or standalone Starpacks directly
from XOTCclIDE. It work properly only form XOTclIDE TclKit ver-
sion or if TclKit envirorment are installed properly in your Tcl sys-
tem

This tool can inspect all Tk windows. It can be used to view and
change al configuration of every Tk window. Tk Inspector includes
also widget serializator that can be used to serialize every windows
and their descend to Tcl script that can be used as code snippet.

Ideal for edit and test short Tcl-scripts that all contents are evaluated
in global context. You can use all advantages of XOTclIDE: syntax
highlighting, syntax check, code completion. The script can be eval-
uated in lave interpreter.

GUI helper for SQL accessto al databases supported by XOTclIDE.
Additional 2 Lists-Views show all table names and columns names
(schema of DB). The result will be displayed in TkTable-Widget.
Every cell can be also viewed in separately view.

This plug-in is adapted GPL program written by L. Riesterer original
source [http://laurent.riesterer.free.fr/regexp/]

52

http://laurent.riesterer.free.fr/regexp/
http://laurent.riesterer.free.fr/regexp/

Chapter 5. Additional Information
Author and License of XOTclIDE

The program XOTclIDE was written by Artur Trzewik and is GNU Public License Software (GPL) The
documentation of this program (this document) is licensed under GNU Free Documentation License
(GFDL).

The original GPL License text can be found in the file LI CENSE included in XOTclIDE source package
or at the GNU Homepage [http://www.gnu.org]

XOTclIDE WWW Resources

XOTclIDE [http://www.xdobry.de/xotclIDE] XOTclIDE Home Site
e Tcl [http://tcl.tk] Main Tcl Site
» XOTdl [http://xotcl.org] XOTcl Site

e Active State Tdl [http://www.activestate.com/tcl] Commercia Tcl Maintainer. Offers free Tcl binar-
ies (recommended for Windows)

e Tcl Wiki [http://mini.net/tcl] Tcl Wiki - User Forums

53

http://www.gnu.org
http://www.xdobry.de/xotclIDE
http://tcl.tk
http://xotcl.org
http://www.activestate.com/tcl
http://mini.net/tcl

