
XOTclIDE User Guide

Artur Trzewik
Edited by Bill Paulson

XOTclIDE User Guide
by Artur Trzewik and Bill Paulson
Copyright © 2006 Artur Trzewik

This document contains the user documentation and tutorials for XOTclIDE

XOTclIDE is an Integrated Development Environment for XOTcl and Tcl. XOTcl is an object oriented
extension for Tcl. XOTcl can also manage old Tcl code (procs).

XOTclIDE was suggested and inspired by such great Smalltalk graphical environment systems as
Squeak and Envy.

XOTclIDE is licensed under the GNU Public License

Copyright Artur Trzewik. License GNU Free Documentation License (GFDL)

Table of Contents
1. XOTclIDE Overview .. 1

About this document .. 1
Main Features ... 1
Benefits ... 1
Ancestry .. 2

2. Getting Started Tutorial .. 4
Developing Your First Application - Tutorial ... 4

Starting XOTclIDE ... 4
Creating new Components .. 5
Adding Tcl procedures ... 6
Interactive work with procedures .. 7
Saving Component in File System .. 8
Using Components without XOTclIDE ... 9
Loading a Package or Component from File System .. 9
Creating Configuration Maps and Distributing Programs 10
Evaluating Short Tcl Scripts .. 11
Advanced Usage: Overview .. 12

Object-Orientation with XOTcl Components and Object Introspection - Tutorial 12
Load Sample Application ... 12
Create an Instance of a Class ... 13
Object Inspector .. 14

3. Programming with XOTclIDE .. 17
System Requirements and Installation ... 17
XOTclIDE Programs and Start Options ... 17

Starting XOTclIDE from tclkit .. 17
Starting XOTclIDE without Version Control System 17
Starting XOTclIDE with Version Control System .. 17
Starting XOTclIDE with Version Control System by loading from Version Control 18
Options synopsis ... 18

Building an Application ... 18
XOTclIDE Components ... 20
Component lifecycle .. 20

Browsers and Inspectors ... 21
Writing Source ... 21
Refactoring .. 22
Debugging running Systems .. 22
Version Control .. 23
Configuration Management and Deploying .. 23
Special Browsers .. 23

Source Editing .. 23
Basic Editor Function .. 23
Code Completion .. 24
Navigation in Sources .. 25
Syntax highlighting ... 25
Checking parentheses ... 25
Automatic Indenting .. 26
Evaluate Tcl Scripts in Editor .. 26

4. Extended Features .. 29
Version Control System ... 29

Benefits of Version Control ... 29
Base Characteristics ... 29
Principle .. 29
Database Schema of Version System .. 30

iv

Definitions (Editions,Versions) .. 31
Using Version System, Main Functions ... 31
Changes Browser .. 32
Component Loader .. 33
Installing Version Control System .. 33

Syntax Checking ... 34
Reason for syntax checking in Tcl/XOTcl .. 34
Syntax checker implementation ... 34
Example Tcl procedures ... 35
Example XOTcl methods .. 35
Syntax Checking while editing .. 35
Syntax Checker Browser .. 36
Tcl/XOTcl Parser .. 37
How to extend syntax interpretation .. 37
Problems ... 38
Magic strings for checker .. 38
Checking Referenced Object Calls ... 38

Configurations Management ... 39
Main Features ... 39
Configuration Map - Without Version Control System 39
Using Configurations Maps ... 40
Deploying Application ... 41
Configuration Browser - with Version Control System 41

Debugging ... 43
Debugger Browser .. 43
Stack Error Browser .. 44
Tracker Browser ... 45
Variable access tracking and watching .. 46

Importing Tcl Projects into XOTclIDE Components .. 47
Importing by definition tracking ... 47
Importing by System Introspection ... 49
Importing Tcl comments ... 50
Plug-ins Architecture ... 51

5. Additional Information ... 53
Author and License of XOTclIDE .. 53
XOTclIDE WWW Resources .. 53

XOTclIDE User Guide

v

List of Figures
1.1. Ancestry of XOTclIDE ... 2
2.1. Component Browser .. 4
2.2. Create Component ... 6
2.3. Invoking Procedures .. 7
2.4. Saving Components ... 8
2.5. Configurations Map Browser ... 10
2.6. Workspace ... 11
2.7. Sample Component in Component Browser .. 13
2.8. Create Instance Dialog ... 14
2.9. Sample Railway application .. 14
2.10. Object Inspector .. 15
2.11. Methods in Object Inspector .. 15
3.1. UML Structure of Components .. 18
3.2. Code Completion .. 24
3.3. Syntax Highlighting ... 25
3.4. Checking Parenthesis ... 25
3.5. Evaluate Scripts .. 26
3.6. Substitute Scripts .. 27
3.7. Inspect Script Evaluation .. 27
4.1. Version System Principle .. 29
4.2. Version System ER Diagram ... 30
4.3. Changes Browser .. 32
4.4. Syntax Checker Dialog ... 36
4.5. Syntax Checker Tool .. 36
4.6. Configuration Map Browser .. 40
4.7. Configuration Browser ... 41
4.8. Debugger ... 43
4.9. Error Stack Browser .. 44
4.10. Method Call Tracker .. 45
4.11. Variable Tracker and Variable Watch .. 46
4.12. Load Package Dialog ... 49
4.13. Comment Scanner Tool .. 50

vi

Chapter 1. XOTclIDE Overview
XOTclIDE is an Integrated Development Environment for the XOTcl [http://www.xotcl.org] program-
ming language. XOTcl is an object oriented extension for Tcl. XOTclIDE can also be used to program
Tcl code that does not use XOTcl. XOTclIDE was suggested and inspired by such great Smalltalk
graphical development environment systems as Squeak and Envy.

About this document
This document is the user guide for XOTclIDE. The first chapter is a short tutorial that demonstrates the
specifics of programming with XOTclIDE. The next chapter describes the use of XOTclIDE. Many
functions and characteristics are not described in this document because they are assumed to be quasi
standard in similar applications. Therefore component development and object-orientation will be not
explained in this document.

This documentation does not contain the programmer guide for programming in Tcl and XOTcl. Suit-
able documentation can be found on the Internet (see the section called “XOTclIDE WWW
Resources”).

Main Features

• Many source editing features for both Tcl and XOTcl, such as syntax highlighting and code comple-
tion

• Debugging

• System Introspection

• Source Documentation

• Source Syntax Checking for Tcl and XOTcl

• Version Control System

• Team Programming Support

• Testing Support (Unit Test Framework)

• Configuration Management

Benefits

• XOTclIDE can manage large projects with thousands of lines of Tcl or XOTcl program code.

• XOTclIDE supports component based development that helps to structure and reuse code in differ-
ent applications.

• XOTclIDE enables interactive XOTcl development, using the introspection functions of XOTcl.
There is no difference between using, developing, debugging and browsing (introspection) the sys-
tem. You work on a live XOTcl system.

1

http://www.xotcl.org

• XOTclIDE is a set of structure browsers. They can be used to browse class and object structure and
add and modify the methods or meta-data.

• The XOTclIDE Object Inspector lets you browse and manipulate all XOTcl objects. You can navig-
ate through sub-object structures, inspect and modify variables, or invoke objects method with a GUI
interface.

• Includes a powerful syntax checking tool to find all typos while editing.

• XOTclIDE manages normal Tcl procedures, allowing reuse of old non-Xotcl code or mixing of Tcl
and XOTcl in one project.

• Supports programming process. Version Control, Unit Tests Framework

• XOTclIDE is easily adapted and extended by the user

• XOTclIDE can be extended with dynamic loadable modules (plugins)

• XOTclIDE enables team development.

Ancestry
XOTclIDE does not try to invent “yet another way” to write computer programs. Rather it is a synthesis
of three streams - Tcl, XOTcl and Smalltalk - in the computer world, along with the author's experience.
Indeed XOTclIDE is a Smalltalk like IDE programmed in Tcl/XOTcl. What are the main ideas taken
from these streams?

• TCL - is the base programming language and platform for this system. Flexible string oriented inter-
preter allows implementing many ideas in a short time. TCL is widely used, has many additional lib-
raries, offers a GUI Toolkit (TK) and supports many platforms.

• XOTcl - enables flexible object-oriented language support for Tcl. Allows programing and structur-
ing large application, and allows reuse of code in an object oriented manner. The implementation of
XOTcl in C brings reasonable performance.

• Smalltalk - the model for a big IDE. How to work with it and use all advantages of interpreted lan-
guage and dynamic/interactive programming. It was also the reference system for some basic pro-
gramming practices and tools (Debugger, Version Control, Unit Tests, Object inspector, Browsers).
Although Smalltalk lost popularity several years ago it has influenced many programming languages
(C++, Java, C#) and IDEs so the concepts will be familiar to many programmers.

Figure 1.1. Ancestry of XOTclIDE

XOTclIDE Overview

2

XOTclIDE Overview

3

Chapter 2. Getting Started Tutorial
This chapter describes the first steps in using XOTclIDE. You will learn how to write your first
XOTclIDE application, and how to save and reload it.

Developing Your First Application - Tutorial
In this section you will learn how to manage the basic tasks of programming with the XOTclIDE: how
to create a new project (component), how to add new source, how to save the project and how to reload
it. This section assumes a basic knowledge of Tcl and programming tools and is designed for program-
mers with some experience with Tcl or XOTcl.

Starting XOTclIDE
Change to your chosen working directory and start XOTclIDE.tcl in it. The command line to start
XOTclIDE depends on your installation. For example, using a Linux RPM installation:

[artur@rybnik xotclIDE]$ tclsh /usr/local/lib/xotclIDE/XotclIDE.tcl
or
[artur@rybnik xotclIDE]$ /usr/local/lib/xotclIDE/XotclIDE.tcl

On Windows systems you can just click on XOTclIDE.tcl.

After loading two windows appear. One window is the Transcript window with a welcome message.
This is used to display system messages and evaluate short scripts. The second window is the Compon-
ent Browser, the main browser used to explore and modify your system structure and program code.

The Component Browser is divided into five panes: Component, Classes/Object/Tcl Procs Groups, Cat-
egories, Methods and Text Editor. The four upper list-views correspond to source code structures within
XOTclIDE. Each of the four has an associated menu. The highest level structure is a Component. A
Component has a specific name and is a container for Classes, Objects and Tcl-Procedures-Groups.
Each Class can have instance methods or class methods, corresponding respectively to XOTcl's inst-
procs and procs. These methods can be grouped together in Categories. Standard non object oriented Tcl
procedures can be part of a Component when grouped in Tcl-Procedures-Groups. Individual Tcl proced-
ures may not belong to Categories. The Methods pane lists the names of methods (procs and instprocs)
in the selected Class and Category. The three levels (Component, Class/Object/Tcl-Procedures-Group,
and Category) may be used to practice component oriented programming (More Information the section
called “Building an Application”).

Exercise

Select component IDECore in the Components list view. In the Class/Objects list view all
classes contained in this component will be listed. Select class IDE::Component in the
Class/Objects list view. Select category _all_categories in Categories list view. Select method
getObjectDefineList in the Methods list view. In the editor area the body (source code)
of this method will appear. The browser will look like screen-shot Figure 2.1, “Component
Browser”. The blue background of the Source button in the right lower corner indicates that
this method has a programmer comment. Press it to see this comment. The editor changes to
comment view. Press the button again to change back to source view. Press button Objects in
the Class/Objects list view to see another type of element of this component.

Figure 2.1. Component Browser

4

Creating new Components
Programming in XOTclIDE is component oriented. Assume that you want to write simple program as
follows.

This procedure dump elements of global array Tcl_platform
to file with name specified by parameter "file"
proc generateTclPlatformProtocol {file} {

global tcl_platform
set fhandler [open $file w]
foreach key [array names tcl_platform] {

puts $fhandler "$key = $tcl_platform($key)"
}
close $fhandler

}
generateTclPlatformProtocol tclPlatform.log

A regular Tcl-Programmer would open his favorite editor, type the text and save it as a Tcl script. Per-
haps he would not create the procedure generateTclPlatformProtocol but would program it directly in
the global context as follows:

set fhandler [open tclPlatform.log w]
foreach key [array names tcl_platform] {

puts $fhandler "$key = $tcl_platform($key)"
}
close $fhandler

This can be good for small scripts. To program larger systems or to create reusable code a good pro-
grammer would prefer to write a Tcl-package like this:

Getting Started Tutorial

5

package provide PlatformLogDumper 0.1
This procedure dump elements of global array tcl_platform
to file with name specified by parameter "file"
proc generateTclPlatformProtocol {file} {

global tcl_platform
set fhandler [open $file w]
foreach key [array names tcl_platform] {

puts $fhandler "$key = $tcl_platform($key)"
}
close $fhandler

}

You would also need to create a file pkgIndex.tcl and add its directory to the Tcl auto_path
global variable. You can use the package as follows

package require PlatformLogDumper
generateTclPlatformProtocol tclPlatform.log

The Tcl package mechanism allows the function library definition to be separated from the function call.

Important

XOTclIDE Components are normal Tcl packages that contain additional meta information that
is handled by XOTclIDE.

Let's make make a first Component. Choose menu Component->New from Component Browser. In the
dialog enter the name of the new component “PlatformLogDumper” and click the apply button. Your
new component will appear in the list of components. In the next section you will learn how to add pro-
cedures to this component.

Adding Tcl procedures
Your new created component appears in the Components list view. Select it. Now create a new Tcl-
Procedures-Group using the menu Class->Tcl Procs Group->New Group. In the dialog type the name of
the group.

The name of the newly created Tcl-Procedures-Group will appear in the Class/Objects list view. Select
it. New you can create your procedure. Select menu Method->New Method Template In the editor win-
dow the template for a Tcl procedure will appear as follows:

proc procName {args} {
enter the body here

}

Type your new procedure. When you are ready you must add the procedure to the interpreter. Use menu
or key accelerator Edit->Save/Apply (Control-s) Your Component Browser will appear as follows:
Figure 2.2, “Create Component”

Figure 2.2. Create Component

Getting Started Tutorial

6

If you want to create a comment for this procedure press the Source button in the right lower edge of the
edit area. The editor pane will change to comment view. Type a comment and apply it with Edit-
>Save/Apply (Control-s)

Interactive work with procedures
The main advantage of XOTclIDE is that it is not only an editor for Tcl scripts but it “sits” directly on a
Tcl-Interpreter. Tcl for XOTclIDE is the same as Lisp for Emacs. You can try (invoke, call) a procedure
immediately after you define it. Select the procedure and choose the menu Method->Invoke You will be
ask to specify the parameters for the procedure call. In Tcl everything is a string so it is no problem just
to type the parameters in the dialog as Tcl words (e.g “2 {2 3}” are two parameters)

Figure 2.3. Invoking Procedures

Getting Started Tutorial

7

The result is returned as result text. If the result is an XOTcl object or list of XOTcl objects the object
inspector will be displayed. If the result is an empty string then a special message box is shown.

Saving Component in File System
To save your new component in the file system use the menu Component Browser Component->Save
Components. In the dialog box select your component and check the button create pkgIndex (see Fig-
ure 2.4, “Saving Components”).

Figure 2.4. Saving Components

After accepting dialog a package file PlatformLogDumper.xotcl will be saved in a filesystem
directory. The file should look as follows.

automatically generated from XOTclIDE
package provide PlatformLogDumper 0.1

Getting Started Tutorial

8

@ tclproc generateTclPlatformProtocol idemeta struct \
PlatformLogDumper MyGroup
proc generateTclPlatformProtocol file {

global tcl_platform
set fhandler [open $file w]
foreach key [array names tcl_platform] {

puts $fhandler "$key = $tcl_platform($key)"
}
close $fhandler

}

Note that the component was saved as a “regular” Tcl package. The one difference is the line beginning
with @. This is XOTcl notation for meta-data and is used in XOTclIDE to code additional structure in-
formation. To use this package from pure Tcl you can check the button no meta data @ before saving
the component or define a dummy proc to ignore the meta-data as follows

proc @ args {}

The checked option create pkgIndex caused the generation of the file pkgIndex.tcl in the same dir-
ectory as the package.

Tcl package index file, version 1.1
This file is generated by the "pkg_mkIndex -direct" command
and sourced either when an application starts up or
by a "package unknown" script.
It invokes the
"package ifneeded" command to set up package-related
information so that packages will be loaded automatically
in response to "package require" commands.
When this
script is sourced, the variable $dir must contain the
full path name of this file's directory.
package ifneeded PlatformLogDumper 0.1 \
[list source [file join $dir PlatformLogDumper.xotcl]]

In this index file appear all packages from the directory with names that match the pattern *.xotcl.

Using Components without XOTclIDE
As mentioned above, XOTclIDE components are normal Tcl packages. To use them from Tcl scripts
you need first to register the package in Tcl package system by setting the auto_path global variable.
If you do not use XOTcl, define a dummy procedure to ignore @ lines. Here is a sample usage from the
tcl shell.

[artur@localhost own_oxtcl]$ tcl
tcl>proc @ args {}
tcl>lappend auto_path .
/usr/share/tcl8.3 /usr/share /usr/lib /usr/share/tclX8.3 .
tcl>package require PlatformLogDumper
0.1
tcl>generateTclPlatformProtocol out.log

Loading a Package or Component from File System
To load a package or component into XOTclIDE use the menu Component->Load Package. If you do
not see your component in the package list, this means Tcl is unable find the package. The package list

Getting Started Tutorial

9

is generated using the Tcl package names command which uses the auto_path variable as a list of
directories to search for packages. XOTclIDE adds the current working directory to the auto_path
list at start time. One way to load your package is to change into the directory with your packages before
starting XOTclIDE.

Normally you do not need to worry about how the components are saved or loaded in the filesystem or
how a component is represented in text. You can install your component in Tcl distribution subdirectory.
Read the Tcl package command manual for more about the package mechanism in Tcl.

Warning

It can be quite tricky to force Tcl to find and load packages you need. Some people use the
phrase “Package Hell”. The package list are built only once and cannot be rebuilt if you change
packages dynamically. You will need to restart XOTclIDE to load packages you have just cre-
ated if your components are stored as files. You would not have this problem if you use
XOTclIDE's Version Control.

Creating Configuration Maps and Distributing Programs
Components in XOTclIDE are like function- or class libraries in other systems. You can build your ap-
plication as one or more components. You also need an application starting script that contains a line
like this

generateTclPlatformProtocol out.log

You can of course write you own start script as follows and save it as a file

lappend auto_patch $pathToComponentFile
proc @ args {}
package require PlatformLogDumper
generateTclPlatformProtocol out.log

Alternatively, XOTclIDE supports configuration maps that group components together and specify a
start script. A configuration map specifies

• Components to load (the order to load and how they should be loaded from file-system or version
control system)

• preStartScript - a script that will be evaluated before loading components

• startScript - a script that starts the application after components are loaded

Configuration maps may be also used to deploy applications.

Tip

“Configuration maps” correspond to project or “solution maps” in other IDEs.
To specify a configuration map you use the Configuration MapBrowser that can be started from the
menu System->Configuration Map Browser.

Figure 2.5. Configurations Map Browser

Getting Started Tutorial

10

Do not forget to apply the start script from the menu Edit->Save/Apply (Control-s). After defining a
configuration map you can save it as a configuration map file (extension .cfmap).

You can set this configmap file as a start parameter of XOTclIDE so all components from this configur-
ation map are loaded at starting time.

[artur@localhost own_oxtcl]$ XotclIDE.tcl -- -configmap platformLogDumper.cfmap

If you develop a big application it's a good idea to define a configuration map and use it as a start para-
meter. (see the section called “Configuration Management and Deploying” for more informations)

Evaluating Short Tcl Scripts
Tcl is often used to write short ad hoc programs called scripts (Scripting Language). Scripts are often se-
quences of simple Tcl commands that are evaluated in the global context. Often no procedures are
defined in such scripts.

Every Editor Text Area in XOTclIDE has the ability to evaluate short scripts. To run (evaluate) the
script just select the script text and invoke it from the pop-down menu (Right mouse-button) or the menu
Editor.

You can load and manage your scripts by using Workspace windows. To open a Workspace use the
menu System->Workspace A Workspace is simply a text area (simple Editor) that can be used to type
scripts, save or load them from the file system. It can be also used as a temporary “scratch pad”, to enter
and evaluate expressions during the process of testing new method definitions.

Figure 2.6. Workspace

Getting Started Tutorial

11

Advanced Usage: Overview
The tutorial above describes how to get your first results with XOTclIDE. The main advantages of this
system can be seen by using the advanced features of XOTclIDE:

Version Control System integrated object oriented version control system lets you track all
changes in a project and restore old versions (the section called
“Version Control System”).

Object orientation with XOTcl XOTclIDE was developed primarilyy to support object oriented
development with XOTcl. Many features - e.g. the object inspect-
or - are XOTcl specific.

System Introspection XOTclIDE lets you inspect and change all objects and variables
in the system

Debugging With the extended debugger extension you can debug your pro-
gram with a professional system. Conditional breakpoints, pro-
gram stepping, program stack introspection are possible (the sec-
tion called “Debugging”).

Object-Orientation with XOTcl Components
and Object Introspection - Tutorial

In this section you will learn about the dynamic and object-oriented aspects of XOTcl programming in
XOTclIDE.

Load Sample Application
Start XotclIDE:

[artur@rybnik xotclIDE]$./XotclIDE

Getting Started Tutorial

12

1 Example by Richard Suchenwirth translated from Tcl to XOTcl by Gustaf Neumann and modified by me. First published on tcl-
wiki.

Now load the component SampleComponent 1 that is included in the XOTclIDE distribution. Choose the
menu Component->Load Package in Component Browser. From the dialog-box select the
“SampleComponent” package to load. Now you should see the following in your Component Browser
window:

Figure 2.7. Sample Component in Component Browser

The Component has two classes (Railroad and Wheel). You can browse the methods of these classes to
see how the component works.

Create an Instance of a Class
Now try creating some instances of the Railroad class. Select the Railroad class in Class view and
choose the menu Class->Create Instance. You will see the following dialog

Getting Started Tutorial

13

Figure 2.8. Create Instance Dialog

In this dialog you can specify the arguments (or additional arguments) for the init method (passed to init
method or parameters). The class definition of Railroad is

Class Railroad -parameter {{speed 4}}

You could modify the start speed by specifying a different speed value (try "-speed 10"). For now you
can simply push the OK button and use default speed 4.

Object Inspector
The new created object of class Railroad builds a window and starts to run.

Figure 2.9. Sample Railway application

In addition XOTclIDE can show another window called an object inspector browser. This window
shows the internal structure of XOTcl Objects. You can see an Object's variables (attributes), subobjects
(aggregated objects) and methods.

You can modify an Object's state by changing a variable in the browser. Choose the speed variable. You
should see the value 4 in your edit-area view. Type 20 in this area and press Control-S or choose menu
Edit->Save You should see the locomotive speed up.

Getting Started Tutorial

14

Figure 2.10. Object Inspector

You can also invoke methods on an object directly in the Object Inspector. Select the emergencyBreak
method and choose menu Method->Invoke.

Figure 2.11. Methods in Object Inspector

Getting Started Tutorial

15

You can also specify which methods you should see - only those from Railroad or also those inherited
from other Objects or Superclasses. You can even see the mixin methods available on the object.

Getting Started Tutorial

16

Chapter 3. Programming with XOTclIDE
System Requirements and Installation

XOTclIDE is supplied in three versions, either as a set of Tcl/XOTcl scripts (packages), or as a Starpack
or Tclkit [http://www.equi4.com/tclkit] that needs no further installation. The Starpack version is avail-
able only for Windows. The Tclkit version runs on both Windows and Intel Linux.

To run the script version you need an installed Tcl with the Tk and XOTcl extensions. XOTclIDE can
run anywhere Tcl/XOTcl runs but it has been tested only for Linux (RedHat) and Windows. Tcl(Tk) and
XOTcl can be obtained free from the Internet - see Chapter 5, Additional Information. Almost all Linux
distributions offer Tcl and Tk as base packages, but often in the older 8.3 version. For Linux and Win-
dows, XOTcl must be installed separately. To use Version Control you need in addition a relational
database manager (SQL-Database) and the proper Tcl interface to it (see the section called “Version
Control System”). I suggest the following infrastructure.

• Linux as platform

• Tcl and Tk (required)

• XOTcl Extension (required)

• MySQL Database (required for version control)

• mysqltcl - MySQL Tcl interface (required for version control)

XOTclIDE Programs and Start Options
There are two main options for starting XOTclIDE: with or without Version Control. To use the Version
Control System you must install a database with the program installVC.tcl included in XOTclIDE (see
the section called “Installing Version Control System”).

Starting XOTclIDE from tclkit
XotclIDE.exe -- [-help] [-startMode ideOnlyideDBideFromDBinstallVC] [-ignoreprefs]
[-nodialog] [-preferences preferencesList]
[-configmap configmapFile] [-dumpcompid Id]
[-dumpconfid Id] [-startconfid Id]
[-configmap configmapFile] [-configmapdb configmap_name] [-preloadcomponents conpon-
ents_list] [-preexec script]

Starting XOTclIDE without Version Control System
XotclIDE.tcl -- [-help] [-configmap configmapFile] [-preloadcomponents conpon-
ents_list] [-preexec script]

Starting XOTclIDE with Version Control System
XotclIDEDB.tcl -- [-ignoreprefs] [-nodialog] [-preferences preferencesList]
[-configmap configmapFile] [-dumpcompid Id]
[-dumpconfid Id] [-startconfid Id]

17

http://www.equi4.com/tclkit
http://www.equi4.com/tclkit

[-configmapdb configmap_name] [-preloadcomponents conponents_list] [-preexec script]

Starting XOTclIDE with Version Control System by load-
ing from Version Control

Version Control is important if you want to develop and change XOTclIDE itself. XotclIDEDBFrom-
DB.tcl loads the IDEStart, SQL interface and the rest of XOTclIDE from a Version Control database.
Before calling it, you must install the version control database and import the XOTclIDE sources into
version control.
XotclIDEDBFromDB.tcl -- [-ignoreprefs] [-nodialog]
[-preferences preferencesList] [-configmap configmapFile]
[-dumpcompid Id] [-dumpconfid Id]

Options synopsis

-help print all available options and exit

-preferences You can specify the preferences for database connection. The
parameter is a Tcl keyed list, for example {{interface mysqltcl}
{connection {user root dbank xotcllib}}

-configmap file Load config map and tell XOTclIDE to ignore its own compon-
ents

-configmapdb configmap_name Load config map from version control

-preloadcomponents compon-
ents_list

Load components after startup

-preexec script Evaluate script after startup

-ignoreprefs do not read ~/.xotclide preferences file

-nodialog connect to version control database without showing a connection
dialog. All parameters will be read from preferences file or prefer-
ences list

-dumpcompid Read component with id from version control database, print it
and exit

-dumconfid id Read configuration map with id from version control database
print it and exit

Building an Application
XOTclIDE supports so called component oriented development. Components are big, reusable and com-
plete pieces of code. An application can be built from one or more components that can be also used by
another application. The structure of a component is as shown in the UML diagram Figure 3.1, “UML
Structure of Components”.

Figure 3.1. UML Structure of Components

Programming with XOTclIDE

18

The component is the container for XOTcl classes, objects and Tcl procedures. Configuration maps or-
ganize the components into different applications. To allow more detailed and structured organization of
code XOTclIDE also provides “procedure groups” and “method categories”. Method categories and pro-
cedure groups have no influence on the semantics of a method. Method categories can be effectively
used to group methods into different kinds. Method categories can be very useful to keep track of a large
number of methods defined in one class. In Smalltalk these categories are often used:

• access

• initialize

• actions

• private

• persistence

• release

Procedure groups provide the ability to define the namespace of procedures. If you want to create a col-
lection of procedures in one namespace, use the dialog for creating the Procedure Group. The name of
this procedure group is also the name of a Tcl namespace. All procedures in this procedure group will be
defined in this namespace. One procedure group can only correspond to one namespace (and vice versa).

Programming with XOTclIDE

19

XOTclIDE Components
An XOTclIDE Component is a named persistent set of Classes, Objects, and Tcl Procedure Groups ad-
ministered by XOTclIDE. When you program in XOTclIDE, a Component is the thing that stores your
program. It serves the same purpose as a library in compiled languages or a package in Tcl, providing a
name that can be used to locate and load a set of items. A Component only has meaning when an applic-
ation or program is being loaded - once the program is running, the name of the Component where a
proc or Class was originally stored is no longer useful.

XOTclIDE Components are built on top of Tcl packages - each Component has a package name, calls
package provide, and has an entry in a pkgIndex.tcl file. A Component can be used in any Tcl or XOTcl
program by calling
<code>package require</code>
with the Component's name. Component are a slightly restricted form of package that contains only proc
definitions, Class definitions, Object definitions, and special metadata generated by XOTclIDE. No oth-
er Tcl commands are stored in a Component.

Each Component is stored either in one text file named after the Component, or in a Version Control
database.

Component lifecycle
It may be useful to consider how XOTclIDE loads and stores Components. When a Component is
loaded, all its proc and instproc names, arguments, and bodies are loaded into the running Tcl/XOTcl in-
terpreter. Classes, Objects and their relationships are also loaded. Imagine that you need to edit the body
of a proc found in a Component. When you call up an edit area containing the body, XOTclIDE copies
the current body from the Tcl interpreter into an editable window. When you save the edit (Control-s),
XOTclIDE copies the body back into the Tcl interpreter (by doing a proc command.) At this point, the
new body is available in the Tcl interpreter, and you can test whether it works to your satisfaction. Once
you decide that it's good enough, you save the Component that contains the proc. XOTclIDE gets the
current proc names, args, bodies, Classes and Objects in the Component from the Tcl interpreter, con-
structs XOTcl commands that will regenerate the current state of each thing, and stores the commands
either in a file or a Version Control database.

One thing to note about this process is that anything other than Classes, Objects, procs, and metadata
that was in the Component file will disappear, since the Component stored form is completely rebuilt
when XOTclIDE stores the Component. There's no guarantee that a Component file will preserve previ-
ous order. The text of a Component file may be edited. and any changes to proc bodies will be available
the next time the Component is loaded. The next time XOTclIDE saves the Component, the text file
may not look much like it previously did. For example, any comments added to the file that stores a
Component will disappear the next time XOTclIDE saves the Component.

Another thing to note is that changes to the heritage of Classes or Objects (is-a relationships) and
changes to the bodies of procs that occur while your Component is running under XOTclIDE will be
stored persistently. Suppose your Component has a Class apple - if running your component under
XOTclIDE adds a new superclass Class familyRose to Class apple, saving the Component will preserve
the new superclass relationship. The next time your Component is loaded, apples will be in the rose fam-
ily.

Nested Classes and Object aggregations (has-a relations) are stored in Components only if they have
been defined in a Classes/Objects view. To define a nested class that will be persistently stored, define
the class from the menu and give it a name that has the name of the class it's nested in followed by two
colons (::) and the name of the new class. Similarly, Objects can have persistent subobjects defined by
the programmer. Other subobjects that an Object acquires while running will not be persistent. For ex-
ample, suppose that your component defines a Class vehicle, and an Object orientExpress of Class
vehicle. The Object orientExpress might have many permanent subobjects of Class Wheel. These would
appear in the Classes/Objects view as orientExpress::leftFrontWheel, orientExpress::rightFrontWheel,
etc. While your program is running, the orientExpress Object might get some passengers and save them

Programming with XOTclIDE

20

as subobjects of Class person. These passengers would not be visible in the Component Browser, al-
though they would be visible in an Object Browser. When XOTclIDE saves your Component, the ori-
entExpress will be saved with Wheel subobjects, but without any passengers.

Browsers and Inspectors
XOTclIDE was designed as a set of browsers that let you investigate your system in the way that you
need for your task. Other IDEs offer one all purpose single window to access all functions which tend to
be overloaded and complex. In software development you have many different tasks that need special
views into your system. You need different views and functions for programming, debugging, version
management, deployment, quality management, code review. These views should be similar enough to
reuse user knowledge and offer consistent handling. Of course some browsers (for example the Com-
ponent Browser) will be used more often and should have more functionality. The right balance must
be found between the two extremes - either one view with overloaded function or many views with only
a few functions. This section presents all XOTclIDE browsers sorted by main programming task.

In XOTclIDE we distinguish between browsers and inspectors. A Browser offers a view on code defini-
tion (classes, methods and other). Inspectors allow the user to navigate through Tcl Interpreter data
space. They can show the state of XOTcl Objects and global variables.

All browsers in XOTclIDE are built on the same principles. All browsers are divided (composed) into
areas (panes). There can be many list areas (list-views) and one or more edit areas. Each view area has a
corresponding pop-down menu in the main menu. Pop-up menus with the most used menu items let you
reach needed functions in the place you need them. Many browser subcomponents (sub views) are re-
used in different browser windows with the same functionality.

Almost all component windows have a special System menu that offers access for launching other
browsers and reaching main IDE functions, like settings.

In XOTclIDE you can open one browser type several times. They work independently. Normally you
will use more than one component browser to see different code at the same time. You can write a meth-
od call in one browser and open another browser to see the called method body.

Warning

XOTclIDE Browsers use a passive “model view controller”. If two browsers show the same
code and in one of them the code is changed the changes are not updated automatically in the
other view (browser). You can force the view to be updated by double-clicking on the list-view
item.

Writing Source

Component Browser Probably the most used browser. It is suitable for viewing and changing
components, classes (or object, Tcl-Proc-Groups), categories, procs or
methods. With this browser you have access to all the source code in
your system (definition space). The browser also has functions to search
after a specific class in your system.

Heritage Browser This browser is suitable for examining and developing class hierarchies.
The XOTcl language provides multiple inheritance - one class can have
many parent classes. To visualize this relationship the parent classes are
represented as leaves of a tree in this view. To see the inheritance of a
class select it in the Component Browser and use menu Class->Heritage
Browser. You can also launch this browser with the System->Heritage

Programming with XOTclIDE

21

Browser In this case you must specify (by Name or choice-list) the class
name you want to view.

Children Browser This browser is suitable for examining and developing class hierarchies.
Unlike the Heritage Browser in this view the children of a class are
shown. To see the descendants of a class select the Component Browser
and use menu Class->Children Browser.

Method List Browser This Browser is launched as a result of searching on method bodies.
Menu Method->Search

Refactoring
Refactoring is a normal part of developing. We learn every day we develop. Refactoring allows transfer-
ring new knowledge to old code, and adapting old code for new purposes.

The main condition for successful refactoring is quick understanding of old code that was probably writ-
ten by another people. Code reading skills are important in this point. Since methods in object oriented
system are relatively short, the main question is to know and find the context of their usage. To view the
definition of a method that you see in a method body select the method's name in the editor and use
menu Method->Search Implementors. If you want to know where a method is called from select it in
Methods view and use menu Method->Search Senders. Also the function “Browse it” in Menu Method-
>Search Implementors (Control-r) is very useful in finding symbol definitions. Just select a symbol
(word) in any editor area and invoke it from the pop-up menu. The function first searches for a class or
object name equal to the selected text, then for a method or procedure name.

The following refactoring functions are possible in XOTclIDE

Rename Component Menu Component->Rename

Moving Classes to Another Com-
ponent

Menu Class->Move to Component

Coping Classes/Objects Menu Class->Copy Class/Object This function can be also used to
rename a class. Just copy the class to a new name and delete the
old class.

Extract method body parts Menu Method->Selection to new method This task is normally
done if the method becomes too long and you want to divide it in-
to smaller methods. This function cannot resolve the correct vari-
able definitions and functions parameters.

Rename method name There is no direct function for it. Select the method, then in the
editor type a new name in method body, and then accept the
change in the editor. The new method will be added. The old one
must be removed with the delete function.

Debugging running Systems

Debugger This is a pure Tcl debugger. Call “::xotcl::Object halt” in the method body.

Object Inspector In the Object Inspector you can view and change variables of an XOTcl ob-
ject. It also has method lists that can be used to invoke methods on objects. To
launch the object inspector Class->Inspect All Instances You can also call

Programming with XOTclIDE

22

method inspect on every XOTcl object.

Version Control
If you start XOTclIDE with version control the browsers offer additional functions for managing version
control. The component, class and method areas (views) have an additional sub menu Version Control

Configuration Management and Deploying

Configuration Map Browser Launch from the menu System->Configuration Map Browser

Configuration Browser Available only if you started XOTclIDE with Version Control
System->Version Control->Configuration Browser

Special Browsers

Transcript This is a main singleton edit area that is either used to display sys-
tem messages (per command: Transcript message "Hallo World")
or to evaluate short Tcl scripts.

Workspace It is a simple edit area that can be used to evaluate Tcl scripts.
You can load text files into a workspace or save the contents into
a text file.

Global Variable Inspector Access from the menu System->Global Vars Inspector It can be
used to inspect all global variables, or namespace variables.

Source Editing
Basic Editor Function

The XOTclIDE editor is based on a Tk Text widget. The following functions are available.

Cut Text Key Accelerator Control-x

Copy Text Key Accelerator Control-c

Paste Text Key Accelerator Control-v

Undo Key Accelerator Control-z available only with Tcl8.4

To see other accelerators see the Tk Text Widget documentation. text widget manual
[http://purl.org/tcl/home/man/tcl8.4/TkCmd/text.htm].

Standard text find and replace dialogs are available in menu Edit. To search for text in many methods
use the menu in Browser Component Browser Method->Search Text (F4).

Programming with XOTclIDE

23

http://purl.org/tcl/home/man/tcl8.4/TkCmd/text.htm

Code Completion
It works like file name competition in bash (Unix Shell) or code completion in typed program language
IDEs. The user can type the first character of token than press Tab or Control-Space. XOTclIDE tries to
complete the token depending on its context. If many alternative completions are available a pop-down
window list will be displayed.

Figure 3.2. Code Completion

The following language tokens can be completed

Tcl Core-Commands commands like: lappend list foreach

Tcl Core-Commands parameters for example string length|match|range

Defined Tcl Procedures all procedures known from info procs

Defined XOTcl Classes and Object all XOTcl Classes and Object in every namespace.

local class methods all methods (including methods derived from other classes) found
by $instance info instprocs

Programming with XOTclIDE

24

visible variables variables defined per set append instvar foreach ... or method
parameters. Just type $ and press the Tab key

Navigation in Sources
The Method menu in the Component Browser offers some additional help functions for browsing
XOTcl/Tcl methods. You can return to the last shown method by Functions “Back Method (Alt-Left)”
or “Forward Method (Alt-Right)” just like from your HTML browser.

Spawn View opens a new editor window with the same contents as the current edit area.

Syntax highlighting
XOTclIDE implements two kinds of syntax highlighting:

Simple syntax highlighting is based on regular expression patterns. It highlights only "", sub-
stitution and # comments.

Parser-based syntax highlighting This syntax highlighting gives a truer result. It highlights Tcl
core-commands, variables, comments, "", substitution and XOTcl
key-words.

Figure 3.3. Syntax Highlighting

Checking parentheses
Finding opening or closing parentheses can be hard work in understanding some Tcl methods. Double-
click on [{" or]}" and XOTclIDE will find the corresponding opening or closing parenthesis for you
and select it.

Figure 3.4. Checking Parenthesis

Programming with XOTclIDE

25

Automatic Indenting
XOTclIDE tries to set the same indent in a newly inserted line as in the last line. If the last character be-
fore a new line is an opening parenthesis { then in the new line the indenting will be increased by four
and a matching closing parenthesis will be inserted.

foreach a $list {here cursor

After a new line you will see this code

foreach a $list {
here cursor
}

Evaluate Tcl Scripts in Editor
This is a very powerful function. It lets you evaluate Tcl scripts as in the Tclshell console but is more
flexible. Simply select a string and evaluate it with the pop-down menu or key-accelerator. Now you
will notice that in Tcl everything is a string. It is also the easiest and fastest way to program in XOTcl/
Tcl.

Figure 3.5. Evaluate Scripts

Programming with XOTclIDE

26

The Menu “Print it” corresponds to the Tcl eval command. You can also use Control-q.

Figure 3.6. Substitute Scripts

Menu “Substitute it” corresponds to the subst Tcl command.

Figure 3.7. Inspect Script Evaluation

Programming with XOTclIDE

27

Menu “Inspect it” evaluates the selected text and launches an inspector on the returned value if it is a
XOTcl object. You can also use Control-g. If the result of the last operation is an XOTcl Object then it
will be displayed in an Object inspector.

You can use Workspaces (see menu System->Workspace) to evaluate short Tcl scripts.

Programming with XOTclIDE

28

Chapter 4. Extended Features
Version Control System

As soon as you develop more than “Hallo World” programs you need a version control system. You
need it to save and archive your code and follow the code changes. Version Control gives you a guaran-
tee of returning to a former code state so you can experiment with your code. Version control is an im-
plicit requirement for many extreme programming practices. In XOTclIDE all code changes are updated
in version control immediately so you need not worry about saving your source. The Version Control
System is also a code repository that can be centralized for many developers. Components can be loaded
and executed directly from the version control repository without the need to save them as files in a file
system.

Benefits of Version Control

• database oriented - all information is stored in database

• central code repository - no file copying

• suitable for big projects - able to browse in thousands of lines of code

• multiuser capable

• flexible as XOTcl - no locks, no commit, developed specially for object oriented languages like
XOTcl.

Base Characteristics

• based on relational database (currently mysql, postgres, sqlite or odbc)

• XOTcl programs are stored and managed corresponding to their structure. (Components, Classes/
Objects, Methods).

• Every change in your system is stored on the fly. You need not ask the system to update the struc-
tures.

• If you add or modify any method, a new row is inserted into the database. The old method version is
normally not deleted. You can always return to every state in the past (no comment and uncomment
of code pieces).

• Stores not only sources but also additional data as documentation, comments, meta data.

Principle

Figure 4.1. Version System Principle

29

XOTclIDE Programs are structured in Components (a concept specific to XOTclIDE), Classes/Objects
and Methods (see the section called “Building an Application”). All these structure elements are stored
and managed separately in the database. A class can have many versions without having to store a com-
plete class definition in a separate text file (as is usual in cvs if a class is one file) with many redundant
copies even though only one method differs. Normally the programmer doesn't care about version con-
trol. He just develops. The version control uses so called optimistic locking. If the programmer thinks
the state of a component or class is stable and ready to be marked he can “version” this component or
class. After this he can return to this state or recognize changes among different versions.

Database Schema of Version System

Figure 4.2. Version System ER Diagram

Extended Features

30

There are m:n relationship between Components, Objects/Classes and Methods, meaning one method
version can belong to m object-versions. This diagram does not include configuration maps. If you know
this schema you can formulate queries on the repository directly in SQL. It is quite easy to find the new-
est methods or statistics about code development with simple SQL queries.

The object attribute “deforder” specifies the order of loading Objects/Classes into an interpreter.

The ComponentRequire entity maps the requirements for a single component version. The information
that a special component version needs a special version of another component is not stored.

Version info attributes are intended to store short text information for developer about the version and
are not used to identify entities.

Definitions (Editions,Versions)
An Edition is a piece you can work on. There are Component, Object and Method editions. Editions can
be changed. Methods can only have editions.

Versions are frozen editions which means they cannot be modified. A single class version always has
the same methods. To freeze an edition you have to version it. To modify a versioned class you must
open a new edition of the class. This new class edition is based on the last version of the class.

Using Version System, Main Functions
The following functions are available on the menu for most structure items (Components, Objects,
Methods).

Extended Features

31

• Available - Show all items in database. All Components, all objects, and all methods that belong to
the selected object. You can choose a edition and load it into the system so you can find and reload
the methods you have deleted.

• Editions - show all editions of currently selected item (Component, Object, Method). You can load
your chosen version into the system.

• Changes - start the Changes Browser to show changes compared to another edition in the database.

• Load Previous - you can return to a previous edition. For methods you can simply discard the latest
changes.

• Version - Freeze current selected edition. (cvs tag or labels) You can version only components and
classes/objects. (It makes no sense for methods). You can always return to this state of the class or
component.

• New Edition - to develop a versioned edition you must make a new edition. The system makes a
working copy of a version.

• Version Info - Show a small info dialog. You can specify the version string which can be 30 charac-
ters long. The first number will be automatically incremented by opening a new edition. This num-
ber is used as version number for Tcl packages.

The functions below are available only for components:

• Import - Install a package into repository. Probably loaded per load package by package require into
database.

• Requirements - Show and edit the required components for a selected component. The requirements
are set automatically. Normally you do not need to change them.

Changes Browser
You can see the differences between this version and another version. It is diff command for XOTclIDE.
In figure Figure 4.3, “Changes Browser” we can see the changes between class versions of class IDE-
Core. In the method list are shown all instance methods with differences. Since the method rek-
BuildDefList is selected in the text area we can see (yellow selection) the exact differences.

Figure 4.3. Changes Browser

Extended Features

32

Component Loader
You can execute programs directly by loading them from the Version Control System. It is not neces-
sary to deploy your application as a set of files. This makes the management of many client systems
very easy but the loading time can increase. CompLoader.tcl is a small independent script that can con-
nect to repository, load the components specified by a configuration map and execute them.

Usage: CompLoader.tcl [-nodialog] {-ignoreprefs] {-nosynchronize] [-help] [-preferences list]

-ignoreprefs do not read preferences

-nosynchronize no IDE self developing mode

-nodialog no user interaction while connecting to db

-preferences string overwrite preferences (use keyed list)

-help show all options

Installing Version Control System
XOTclIDE supports the following databases as repository

• mysql

• postgres

• odbc

Extended Features

33

• sqlite

The Tclkit distribution (Starpack) comes with sqlite. I recommend using mysql because it is my primary
developing system and the best tested.

To get version control on a Linux system you must:

• Install mysql database. I recommend using RPM packages for your distribution.

• Install mysqltcl extension to access mysql from tcl. To compile it yourself you need header files for
mysql database (for redhat the package mysql-devel). There are also RPMs for Linux available on
the mysqltcl site.

• Run the installer tool installVC.tcl. It can check the database connection, specify the connect para-
meter, install tables and copy components to repository. Then you can start XotclIDE with
XotclIDEDB or XotclIDEFromDB. The first connects to the database after loading itself using pack-
age require. XotclIDEFromDB tries to load the entire application from DB.

Syntax Checking
Reason for syntax checking in Tcl/XOTcl

Tcl has no types and and this is good. One disadvantage is that ugly syntax errors (typically typos) crash
your program the first time you run it. Therefore you must care about running every piece of your code
through interpreter by writing special test procedures. Syntax checking with XOTclIDE can find most of
these errors (syntax errors) at editing time by simulating the interpreter. The syntax checker can parse
and interpret code without running it.

Syntax checker implementation
XOTclIDE implements a static syntax checker. It parses Tcl/XOTcl procedures and finds errors that nor-
mally appear only at run time. Because XOTclIDE does not manage source code but manages a Tcl/
XOTcl interpreter it always checks a method in the actual interpreter context. You cannot check your
Tcl files without loading (source $your_file) the procedures into the interpreter. The following syntax
checks are processed.

• check all called procedures

• check the count of arguments

• simulate quote and command substitution

• simulate evaluation of control structure commands (if, for, foreach, ...)

• check variable visibility

• check XOTcl self method calls. (my callMe; [self] callMe)

Syntax Checking can be used in two ways

• Syntax check while editing or accepting code.

• Run the syntax checker on projects, so you can check existing Tcl/XOTcl sources.

Extended Features

34

Example Tcl procedures

procs example {a} {
set b [lindex $a 0]
puts "$a $c"
set e [lindex $a end dummy]
foreach d $a {

if {$d==a} {
putd $d

}
}

}

The syntax checker will find the following errors:

procs example {a} {
set b [lindex $a 0]
puts "$a $c"
unknown variable c
set e [lindex $a end dummy]
await (2,2) arguments
foreach d $a {

if {$d==a} {
putd $d
unknown proc

}
}

}

Example XOTcl methods

Class Test -parameter {par1}
Test instproc foo1 {a {b 1}} {

puts "[self] $a $b"
}
Method to check
Test instproc foo2 {b} {

my foo1 test
my foo1 test 1 2
await (1,2) arguments
foreach elem $b {

puts "[my par1] $elem"
my par1 $elem
my foo3
unknown instproc

}
set c $d
unknown variable d

}

Syntax Checking while editing
To enable syntax checking while editing, click on the check-box in menu Edit->Syntaxcheck on Save.
All accepted (saved) code will be syntax-checked. If errors are found a new window with syntax mes-

Extended Features

35

sages are displayed. You can see the corresponding code in the editor by clicking on the list items. (see
Figure 4.4, “Syntax Checker Dialog”)

If the errors shown by the syntax checker are not really errors or you have already corrected the errors
you can press the button Force Saving. The code shown in the editor will be accepted without syntax
checking.

If you want to force syntax checking without accepting choose menu Edit->Syntax Highlight->Force
Syntax Check.

Figure 4.4. Syntax Checker Dialog

Syntax Checker Browser
You can launch this tool from the menu System->Syntax Checker. Choose the components you will
check and run the check with button Check Selected. You can browse the errors by clicking the other
two lists.

Figure 4.5. Syntax Checker Tool

Extended Features

36

You can produce a protocol of checking as text file with menu Syntax Check->Protocol to file.

Tcl/XOTcl Parser
The XOTclIDE syntax checker works by using its Tcl parser programmed in XOTcl (see component
IDETclParser). It produces a parser tree that can also be used for other purposes. At this time the syntax
highlighting is also based on this parser.

Other ways of using Tcl parser in Tcl.

• Normalize source code (pretty print)

• convert source codes from or to another object oriented Tcl. (ITcl)

• Refactoring tools in the manner of Smalltalk.

How to extend syntax interpretation
See the PrsContext>checkTclCommand method. The syntax of all Tcl control command are coded as
simple pieces of code.

while proc
[$command getElem 1] substituteContents
[$command getElem 2] evalContents
set proc
if {$count==2} {

my addVariableFrom [$command getElem 1]
} else {

my checkVariableFrom [$command getElem 1] $notifier
}

Extended Features

37

It should not be difficult to extend the semantics for more commands.

Problems
The syntax checker cannot simulate the full power of a Tcl interpreter. For example, it interprets double
substitution as:

set a putd
$a hallo
set a c
set $a 2
puts $c

"$a hallo" will be not reported as an error but "puts $c" will report the error "unknown variable c".

Magic strings for checker
If you want to avoid syntax checking for one method place the string "no syntax check" in the method
(probably as a comment).

If you want to force the checker to accept a variable use "add variables (varName varName2)"

add variables (c)
set a c
set $a 3
puts $c

Checking Referenced Object Calls
It is also not possible to check referenced object calls:

set a [MyClass new]
$a doJob
also direct call by object name
MyClass myObject
myObject doJob

The first method call will be not checked. The checker has no information about what is $a. The second
method call will be reported with the error "no such proc" (myObject). This second type of call should
be very rare in XOTcl programs (besides global singleton objects).

To solve the problem the checker would need more type information. Type information could be coded
as meta information in the class. For example:

Class A
A addMetaVariable drawContext DrawContext
A instproc draw {} {
my instvar drawContext
$drawContext drawLine 0 2 0 50
}

In this case the Syntax Checker would know that "drawContext" references an object of class "DrawCon-
text". The same thing could be done for method arguments or even all variables by using special in-line

Extended Features

38

directives

set a [MyClass new]
variableType a MyClass
$a doJob

This could be a back door to make Tcl type-safe if you want. In fact, the meta type information could be
collected by doing analysis of a running system (for example by using XOTcl filters). This type inform-
ations could also be used to build XOTcl assertions.

There is a chance of making a very powerful Tcl development system even with type safe syntax check-
ing.

Configurations Management
Configuration Management relates to two other areas in the software development process. They are De-
ployment and Release Management. In XOTclIDE Configuration Management is based on
“Configurations Maps” that are used to specify a particular application (that is commonly deployed as
one unit) as a collection of components. Versioned configuration maps allow performing release man-
agement. With XOTclIDE it is very easy to detect all changes (and their causers) between two applica-
tion versions. You need no additional bureaucracy in your project.

Main Features

• organize the groups of components which should be loaded and used together

• build application (distribution) as a set of XOTclIDE components and a start script

• build the base file for CompLoader.tcl to load your application directly from a database
(thin-clients).

• specify the exact version numbers and order of components which should be loaded.

Two tools for configuration management are available in XOTcl. The Configuration Map Browser can
be used without the version control system and the extended Configuration Browser (Menu System-
>Version Control->Configuration Browser) can only be used with the version control system. The Con-
figuration Browser saves all information in the version control system. You can import and export data
between the two systems.

Configuration Map - Without Version Control System

Warning

It is strongly recommended to use the Configuration Browser if you work with the version con-
trol system.

A Configuration Map is a file (Tcl-script) that exactly specifies the components to be loaded and the
start scripts. One script (preStartScript) will be invoked before loading components and one (startScript)
will start your application after components are loaded. (see file Sample.cfmap)

The component list has the structure

{IDECore 10}

Extended Features

39

{IDEBase 12}
{IDEGUI newest}
{IDEView package}
IDEViewDB

The loader will search the components IDECore versionId=10 and IDEBase versionId=12 in the data-
base. The newest version of the component IDEGUI will be loaded. The Component IDEView will be
loaded with package require IDEView. For component IDEViewDB the loader will search first in the
database and if not found it will try to load the package with package require IDEViewDB.

Using Configurations Maps
Launch the Configuration Browser by selecting menu System->Configuration Browser. Load the con-
figuration map (Sample.cfmap) by selecting menu Edit->Load Configuration Map. Press the toggle but-
ton. You can see the aspects of configuration maps

• preStartScript - tcl code that will be started before loading components

• startScript - tcl code to start your application. Evaluated after loading all component.

You can use list boxes and buttons to specify the configuration components

Figure 4.6. Configuration Map Browser

Extended Features

40

You can edit them. Press Control-S to apply changes. Select Edit->Load Components to load compon-
ents into the system (interpreter). Select Edit->Run Start Scripts to evaluate preStartScript startScript.
You can make a new configuration map by using Edit->Init From System

Deploying Application
Distribution is the set of files that you can bind for example as a tar or zip file and distribute to other
parts. A Configuration map is a base to specify the distribution. First load the component with Edit-
>Load Components than select menu Edit->Make Distribution. Select the directory (or create a new
one). The system generates the set of files:

Sample Sample.cfmap SampleComponent.xotcl pkgIndex.tcl

Sample is the executable file to start the application. Take a look at it.

#!/usr/local/bin/xowish
File generated by xotclIDE
edit if you want

set sname [info script]
if {$sname==""} {

Run interactive for develop purposes
set progdir [pwd]

} else {
file lstat $sname stats
follow sym links
if {$stats(type)=="link"} {

set sname [file readlink $sname]
if {[file pathtype $sname]=="relative"} {

set sname [file join [file dirname [info script]] $sname]
}

}
set progdir [file dirname $sname]

}

lappend auto_path [file dirname $progdir]
package require PlatformLogDumper
generateTclPlatformProtocol out.log

Configuration Browser - with Version Control System

Figure 4.7. Configuration Browser

Extended Features

41

This tool saves the configuration-maps in the version control systems so configuration-maps can also
have editions and versions. Therefore you can have many editions of one configuration-map. You can
browse changes among different configuration-map editions.

Warning

Unlike other browsers, all Configuration Browser functions are available only in pop-down
menus.

For example you have built a program named sqleditor. In Version 0.1 your program is built from com-
ponents as below

configuration-map - sqleditor (version 0.1)

• guisystem - version 0.1

• sqlparser - version 0.2

• persistence - version 0.3

And the additional configuration-map (sub configuration map) sqlinterfaces - version 1.2

In version 0.2 sqleditor has the following configuration

• guisystem - version 0.2

• sqlparser - version 0.2

Extended Features

42

• persistence - version 0.4

And the additional configuration-map (sub configuration map) sqlinterfaces - version 1.2

The main idea of Configuration Browser and Configuration-Maps is to have a medium for component
based programming. This means you have many components that are parts of many products. All these
components are in one version system.

It is not yet possible to use the Component Browser to generate a distribution. You must export a ver-
sioned configuration map to configuration map file with pop-up menu Conf. Version->export to map.
Then you can use this file with Configuration Map Browser

Debugging
Debugger Browser

This Browser lets you stop the program flow at a point and view calling stack methods and local vari-
ables. To set a break point call the halt method

[self] halt

in Tcl procedures you need to use

Object halt

Figure 4.8. Debugger

Extended Features

43

You can resume the program flow with button Resume or terminate the flow by exiting the browser
(close window).

Stack Error Browser
This browser can parse the error stack info “errorInfo”. XOTclIDE modifies the bgerror method and
adds a new button to the standard error dialog (XOTclIDE browser). Tcl does not let you inspect the
calling stack after errors so this is all the information available after an error. You can view (Button er-
rorInfo) the original errorInfo text. The browser tries to highlight the called methods in the stack. In the
extended debugger an error causes the debugger to be invoked directly at the site of the error.

Figure 4.9. Error Stack Browser

Extended Features

44

Tracker Browser
This is a GUI for a browser like the tracker from the XOTcl package xotcl::tracker. You can track calls
to every object of a chosen class. To Track a class select menu "Track Class" from the Class Menu in
the Component Browser. You can customize the tracker to show

• only method entry or exit points

• ignore internal calls from the same object

• do not show arguments or return values

• do not show calling information

Figure 4.10. Method Call Tracker

Extended Features

45

Variable access tracking and watching
XOTclIDE can be used to track read or write access on global variables or object variables. To add some
track use variable menu in global variables browser or object inspector. The some selected access occurs
the debugger will be invoked in access place. You can inspect in debugger the access context and re-
sume the operation per button resume. The variables can be also watched in entry Tk widget link per -
textvariable with chosen variable.

Figure 4.11. Variable Tracker and Variable Watch

In this screen-shoot are 4 tracked variables. By variable tk_library the debugger are invoked on every
read access. There are also one XOTcl variable (object variable) objectVar from object c written in
XOTcl style as ::c::objectVar. Local procedures variables can not be tracked or watched.

To add new tracks for chosen variable use Object Inspector or Global Vars Browser. For example Vari-
ables->Debug on Write Access to add write access track. You can have multiple tracks (read, write,
watch) on one variable.

Warning

Watches on variables can prevent proper unset of variables. Therefore watches can influence
program flow.

Importing Tcl Projects into XOTclIDE Compon-

Extended Features

46

ents
In XOTclIDE there are three ways to import your existing Tcl sources into XOTclIDE components. This
section describes how these importing function work and what their limits are. Generally if your Tcl
program is well structured and has no commands or a few commands in the global script context other
than class or procedure definitions the importing works out of the box.

Importing by definition tracking
There are two main importing functions in XOTclIDE, both accessible from the Component Browser

Load Package Component->Load Package With this function you can load any Tcl package ac-
cessible in your Tcl system by calling package require name.

Import Source Component->Import Source This importing function can evaluate any script in the
file system. It is the same as using the command source filename.

The importing functions in XOTclIDE do not parse Tcl scripts but evaluate them with the Tcl Interpret-
er. Therefore the importing works very reliably. Any package or script can be loaded into XOTclIDE.
XOTclIDE tracks the definition of Tcl procedures with the proc name arguments body command and
the definition of XOTcl Classes, Objects and their instance methods and class methods. The importing
tracker notices every newly defined procedure, creates components, and adds the procedure to this com-
ponent. All procedures are also normally evaluated by Tcl interpreter. The importing tracker does not
notice any other script evaluation in the global context.

Limits of Source Importing and manual adaptation

Let's examine a Tcl script in the file myapp.tcl that should be imported.

This is great script that I want to reuse in XOTclIDE
Author: old Tcl'er
Revision:
package require Tk

set debug 1
set color red
set configfile myapp.conf
if {![file exists $myapp.conf]} {

error "can not find config file $configfile"
}

Starting Application
parameters: None
proc startApp {} {

button .re -text "Quit" -command "quite"
... your program

}
... many other defined procedures

next line starts the application
startApp

The importing function will create a new component with the name myapp with all your procedures. The
new component can be seen as follows

automatically generated from XOTclIDE
package provide importExample 0.1

Extended Features

47

@ tclproc startApp idemeta struct importExample default
proc startApp {} {

button .re -text "Quit" -command "quite"
... your program

}

As you see, all comments, global context commands and the application starting command are lost.
Comments (# lines) in the global context are not imported during evaluation because Tcl ignores them.
You can use the comment importer (see the section called “Importing Tcl comments”) to add these com-
ments to the component.

Another problem is the evaluation of Tcl commands in the global context. In XOTclIDE you should
have just one such line coded in the configuration map (see the section called “Configurations Manage-
ment”). To enable proper import the definition block should be moved to a special new procedure. The
example above could appear as follows:

This is great script that I want to reuse in XOTclIDE
Author: old Tcl'er
Revision:
package require Tk

set debug 1
proc defineGlobalConstans {} {

global color configfile
set color red
set configfile myapp.conf

}
proc checkConfigFile {} {

global configfile
if {![file exists $configfile]} {

error "can not find config file $configfile"
}

}
Starting Application
parameters: None
proc startApp {} {

button .re -text "Quit" -command "quite"
... your program

}
proc basicStartApp {} {

defineGlobalConstans
checkConfigFile
startApp

}
... many other defined procedures

next line start the application
basicStartApp

In this case we have only one line with direct script evaluation and this can be imported into XOTclIDE
without losing information. I think good Tcl programs should be written this way - no evaluation in the
global context - anyway.

Importing - Load regular Tcl Package

To import a regular tcl package use menu Component->Load Package in Component Browser. A new
component with the same name as the imported package will be created, along with nested packages that
are loaded from the imported package using package require.

Extended Features

48

Figure 4.12. Load Package Dialog

Importing - Import Source

Newly created components will have names that correspond to the script file name, without extension.
Any nested script evaluation or package require commands are respected. Before sourcing the script
XOTclIDE changes the working directory to the path of the script file. The application will start nor-
mally. A problem may appear when the application uses a toplevel window, as the toplevel window is
already used by the XOTclIDE Transcript window. If an error occurs while importing, importing is in-
terrupted with the error message.

Procedures defined in the :: namespace will be added to a Tcl-Proc-Group named “default”. Procedures
with names “mynamespace::myname” with be added to a Tcl-Proc-Group named “mynamespace”.

Importing by System Introspection
Another way to import your application is to start XOTclIDE from your application and introspect it
with XOTclIDE. XOTclIDE can import procedures and XOTcl object classes directly from a running
Tcl interpreter. To start XOTclIDE from your application you can use the START.tcl script in the
XOTclIDE directory. Change the working directory to the XOTclIDE directory with the START.tcl
script.

To import code from your running application you must first create a new component where all proced-

Extended Features

49

ures and classes from the Interpreter will be stored. To import a Tcl procedure from the Tcl interpreter,
first select the component where you want to import to and use menu Command->Low Level Functions-
>Register Tcl Proc from Interp in Component Browser

To import XOTcl Classes from the Interpreter select the component and choose menu Command->Low
level Functions->Register Class from Interp in Component Browser

Although importing an application like this is more work, it's a good choice if you want to import only
part of an application or the application is not in a readable format.

Importing Tcl comments
Consider the example below

This procedure make magic initialization of
X Module.
Warning:
proc initModuleX {{path {}} {

#
#

}

The three line comment belongs to procedure initModuleX. XOTclIDE has a special parser that can scan
Tcl script files and associate the comments to previously imported components. To launch the # Com-
ments Scanner use the menu System->Extras-># Comments Scanner Unlike the source importer, this
tool does not evaluate the selected scripts but scans all lines after a leading # character.

Figure 4.13. Comment Scanner Tool

Extended Features

50

Plug-ins Architecture
One of main advantages of XOTclIDE is easy customizing of XOTclIDE for users needs. Many of
XOTclIDE components are loaded dynamic at runing time only on demand. In menu System->Plug Ins
are all currently registered plug-ins accesible. The plug ins are normal components the registration and
start scripts are specified per file pluginslist.txt in XOTclIDE directory.

Following Plug-Ins are currently delivered with XOTclIDE

Unit Test Framework Unit Test Framework programmed after Smalltalk SUnit (JUnit,
NUnit). See also Unit Tests Homepage
[http://www.xprogramming.com/testfram.htm]

XOTclIDE Unit Tests Tests of XOTclIDE itself

Funny Graphics Example Small XOTcl Application taken from Tcl Wiki

HTML Doc Generator Generate HTML Source Code Documentation from Source Com-
ments

Comments Scaner Importing tool described in the section called “Importing Tcl com-
ments”

Tcl Wiki Reaper Can import code sniplets form Tcl wiki Tcl Wiki
[http://mini.net/tcl/8179]

Extended Features

51

http://www.xprogramming.com/testfram.htm
http://mini.net/tcl/8179

TclKit Deploeyer Tool This tool extend the functionality of Application Deployer Wizard. It
can generate TclKit Distributions or standalone Starpacks directly
from XOTclIDE. It work properly only form XOTclIDE TclKit ver-
sion or if TclKit envirorment are installed properly in your Tcl sys-
tem

Tk Win Inspector This tool can inspect all Tk windows. It can be used to view and
change all configuration of every Tk window. Tk Inspector includes
also widget serializator that can be used to serialize every windows
and their descend to Tcl script that can be used as code snippet.

Tcl Script Editor Ideal for edit and test short Tcl-scripts that all contents are evaluated
in global context. You can use all advantages of XOTclIDE: syntax
highlighting, syntax check, code completion. The script can be eval-
uated in slave interpreter.

SQL Browser GUI helper for SQL access to all databases supported by XOTclIDE.
Additional 2 Lists-Views show all table names and columns names
(schema of DB). The result will be displayed in TkTable-Widget.
Every cell can be also viewed in separately view.

Visual Regexp This plug-in is adapted GPL program written by L. Riesterer original
source [http://laurent.riesterer.free.fr/regexp/]

Extended Features

52

http://laurent.riesterer.free.fr/regexp/
http://laurent.riesterer.free.fr/regexp/

Chapter 5. Additional Information
Author and License of XOTclIDE

The program XOTclIDE was written by Artur Trzewik and is GNU Public License Software (GPL) The
documentation of this program (this document) is licensed under GNU Free Documentation License
(GFDL).

The original GPL License text can be found in the file LICENSE included in XOTclIDE source package
or at the GNU Homepage [http://www.gnu.org]

XOTclIDE WWW Resources

• XOTclIDE [http://www.xdobry.de/xotclIDE] XOTclIDE Home Site

• Tcl [http://tcl.tk] Main Tcl Site

• XOTcl [http://xotcl.org] XOTcl Site

• Active State Tcl [http://www.activestate.com/tcl] Commercial Tcl Maintainer. Offers free Tcl binar-
ies (recommended for Windows)

• Tcl Wiki [http://mini.net/tcl] Tcl Wiki - User Forums

53

http://www.gnu.org
http://www.xdobry.de/xotclIDE
http://tcl.tk
http://xotcl.org
http://www.activestate.com/tcl
http://mini.net/tcl

